Methodological Foundations of Modern Causal Inference in Social Science Research

Guanghui Pan
{"title":"Methodological Foundations of Modern Causal Inference in Social Science Research","authors":"Guanghui Pan","doi":"arxiv-2408.00032","DOIUrl":null,"url":null,"abstract":"This paper serves as a literature review of methodology concerning the\n(modern) causal inference methods to address the causal estimand with\nobservational/survey data that have been or will be used in social science\nresearch. Mainly, this paper is divided into two parts: inference from\nstatistical estimand for the causal estimand, in which we reviewed the\nassumptions for causal identification and the methodological strategies\naddressing the problems if some of the assumptions are violated. We also\ndiscuss the asymptotical analysis concerning the measure from the observational\ndata to the theoretical measure and replicate the deduction of the\nefficient/doubly robust average treatment effect estimator, which is commonly\nused in current social science analysis.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper serves as a literature review of methodology concerning the (modern) causal inference methods to address the causal estimand with observational/survey data that have been or will be used in social science research. Mainly, this paper is divided into two parts: inference from statistical estimand for the causal estimand, in which we reviewed the assumptions for causal identification and the methodological strategies addressing the problems if some of the assumptions are violated. We also discuss the asymptotical analysis concerning the measure from the observational data to the theoretical measure and replicate the deduction of the efficient/doubly robust average treatment effect estimator, which is commonly used in current social science analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会科学研究中现代因果推理的方法论基础
本文是对社会科学研究中已经或将要使用的(现代)因果推理方法的文献综述,这些方法用于利用观察/调查数据进行因果估计。本文主要分为两部分:从统计估计中推断因果估计,其中我们回顾了因果识别的假设,以及在违反某些假设时解决问题的方法策略。我们还讨论了从观察数据到理论测量的渐近分析,并复制了当前社会科学分析中常用的系数/双稳健平均治疗效果估计器的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1