On regime changes in text data using hidden Markov model of contaminated vMF distribution

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data Mining and Knowledge Discovery Pub Date : 2024-08-03 DOI:10.1007/s10618-024-01051-w
Yingying Zhang, Shuchismita Sarkar, Yuanyuan Chen, Xuwen Zhu
{"title":"On regime changes in text data using hidden Markov model of contaminated vMF distribution","authors":"Yingying Zhang, Shuchismita Sarkar, Yuanyuan Chen, Xuwen Zhu","doi":"10.1007/s10618-024-01051-w","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel methodology for analyzing temporal directional data with scatter and heavy tails. A hidden Markov model with contaminated von Mises-Fisher emission distribution is developed. The model is implemented using forward and backward selection approach that provides additional flexibility for contaminated as well as non-contaminated data. The utility of the method for finding homogeneous time blocks (regimes) is demonstrated on several experimental settings and two real-life text data sets containing presidential addresses and corporate financial statements respectively.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01051-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel methodology for analyzing temporal directional data with scatter and heavy tails. A hidden Markov model with contaminated von Mises-Fisher emission distribution is developed. The model is implemented using forward and backward selection approach that provides additional flexibility for contaminated as well as non-contaminated data. The utility of the method for finding homogeneous time blocks (regimes) is demonstrated on several experimental settings and two real-life text data sets containing presidential addresses and corporate financial statements respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用受污染 vMF 分布的隐马尔可夫模型研究文本数据中的制度变化
本文提出了一种分析具有散点和重尾的时间方向性数据的新方法。本文建立了一个具有受污染的 von Mises-Fisher 发射分布的隐马尔可夫模型。该模型采用前向和后向选择方法实现,为污染和非污染数据提供了额外的灵活性。在几个实验设置和两个分别包含总统讲话和公司财务报表的真实文本数据集上,演示了该方法在寻找同质时间块(制度)方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
期刊最新文献
Missing value replacement in strings and applications. FRUITS: feature extraction using iterated sums for time series classification Bounding the family-wise error rate in local causal discovery using Rademacher averages Evaluating the disclosure risk of anonymized documents via a machine learning-based re-identification attack Efficient learning with projected histograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1