{"title":"Approximate Optimal Strategy for Multiagent System Pursuit–Evasion Game","authors":"Zhiqiang Xu;Dengxiu Yu;Yan-Jun Liu;Zhen Wang","doi":"10.1109/JSYST.2024.3432796","DOIUrl":null,"url":null,"abstract":"In this article, we propose an approximate optimal control strategy for a class of nonlinear multiagent system pursuit–evasion games. Herein, multiple pursuers aim to capture multiple evaders trying to evade capture. Under the competitive framework, agents not only pursue their individual goals but also consider coordination with their teammates to achieve collective objectives. However, maintaining cohesion with teammates in existing distributed control methods has always been a challenge. To enhance team coordination, we employ a graph-theoretic approach to represent the relationships between agents. Based on this, we design a dynamic target graph algorithm to enhance the coordination among pursuers. The approximate optimal strategies for each agent are solved by utilizing the Hamilton–Jacobi–Isaacs equations of the system. As solving these equations becomes computationally intensive in multiagent scenarios, we propose a value-based single network adaptive critic network architecture. In addition, we consider scenarios where the numbers of agents on both sides are inconsistent and address the phenomenon of input saturation. Moreover, we provide sufficient conditions to prove the system's stability. Finally, simulations conducted in two representative scenarios, multiple-pursuer-one-evader and multiple-pursuer-multiple-evader, demonstrate the effectiveness of our proposed algorithm.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 3","pages":"1669-1680"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10621746/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we propose an approximate optimal control strategy for a class of nonlinear multiagent system pursuit–evasion games. Herein, multiple pursuers aim to capture multiple evaders trying to evade capture. Under the competitive framework, agents not only pursue their individual goals but also consider coordination with their teammates to achieve collective objectives. However, maintaining cohesion with teammates in existing distributed control methods has always been a challenge. To enhance team coordination, we employ a graph-theoretic approach to represent the relationships between agents. Based on this, we design a dynamic target graph algorithm to enhance the coordination among pursuers. The approximate optimal strategies for each agent are solved by utilizing the Hamilton–Jacobi–Isaacs equations of the system. As solving these equations becomes computationally intensive in multiagent scenarios, we propose a value-based single network adaptive critic network architecture. In addition, we consider scenarios where the numbers of agents on both sides are inconsistent and address the phenomenon of input saturation. Moreover, we provide sufficient conditions to prove the system's stability. Finally, simulations conducted in two representative scenarios, multiple-pursuer-one-evader and multiple-pursuer-multiple-evader, demonstrate the effectiveness of our proposed algorithm.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.