Highly sensitive fiber bragg grating accelerometer with low resonant frequency

IF 2.7 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical Fiber Technology Pub Date : 2024-07-31 DOI:10.1016/j.yofte.2024.103919
Teng Guo, Hao Song, Sha Sha, Cunxia Li, Ming Xu
{"title":"Highly sensitive fiber bragg grating accelerometer with low resonant frequency","authors":"Teng Guo,&nbsp;Hao Song,&nbsp;Sha Sha,&nbsp;Cunxia Li,&nbsp;Ming Xu","doi":"10.1016/j.yofte.2024.103919","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate a fiber optic accelerometer for low frequency vibration detection in this paper. A slider moving along a guide rail is suspended over an optical fiber into which a fiber Bragg grating (FBG) is inscribed. When acceleration signal acts on our sensing structure, the slider will vibrate vertically under the constraint of the optical fiber, inducing the change of FBG axial strain and we can therefore establish the relationship between vibrational acceleration and wavelength shift. Laboratory measurements validate the effectiveness of the derived theoretical results that the sensor owns a low natural frequency of 9.5 Hz and a high sensitivity up to 926.29 pm/g from 0.5 to 9 Hz. The sensor structure also shows a good ability to resist lateral interference that the cross-sensitivity is calculated as 0.3%.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103919"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024002645","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a fiber optic accelerometer for low frequency vibration detection in this paper. A slider moving along a guide rail is suspended over an optical fiber into which a fiber Bragg grating (FBG) is inscribed. When acceleration signal acts on our sensing structure, the slider will vibrate vertically under the constraint of the optical fiber, inducing the change of FBG axial strain and we can therefore establish the relationship between vibrational acceleration and wavelength shift. Laboratory measurements validate the effectiveness of the derived theoretical results that the sensor owns a low natural frequency of 9.5 Hz and a high sensitivity up to 926.29 pm/g from 0.5 to 9 Hz. The sensor structure also shows a good ability to resist lateral interference that the cross-sensitivity is calculated as 0.3%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低谐振频率的高灵敏光纤布拉格光栅加速度计
本文展示了一种用于低频振动检测的光纤加速度计。沿着导轨移动的滑块悬挂在光纤上,光纤上刻有光纤布拉格光栅(FBG)。当加速度信号作用于我们的传感结构时,滑块会在光纤的约束下垂直振动,从而引起光纤布拉格光栅轴向应变的变化,因此我们可以建立振动加速度与波长偏移之间的关系。实验室测量验证了理论推导结果的有效性,即传感器具有 9.5 Hz 的低固有频率和从 0.5 到 9 Hz 高达 926.29 pm/g 的高灵敏度。传感器结构还显示出良好的抗横向干扰能力,计算出的交叉灵敏度为 0.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
期刊最新文献
Multi-layer terahertz fiber with a triangular core shape for low-loss propagation 2 × 2 MIMO mm-wave wireless signal transmission based on a novel ROF architecture via dual hollow-core fibers A stable, single-frequency 1083 nm ytterbium-doped fiber laser with a singly-pumped DFB-MOPA architecture An MFC-IIP functionalized SNMNS optical fiber sensor for Cd2+ detection 978 nm Yb-doped fiber laser pumped by a Raman fiber laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1