The Effect of Diphenylphosphate Intercalated Magnesium Aluminum Lanthanum Hydrotalcite on the Thermal Stability and Mechanical Properties of Poly(Vinyl Chloride)

IF 3.9 3区 化学 Q2 POLYMER SCIENCE Journal of Inorganic and Organometallic Polymers and Materials Pub Date : 2024-08-02 DOI:10.1007/s10904-024-03258-2
Jinsheng Duan, Zhaogang Liu, Yilin Li, Peijie Jia, Yanhong Hu, Jinxiu Wu
{"title":"The Effect of Diphenylphosphate Intercalated Magnesium Aluminum Lanthanum Hydrotalcite on the Thermal Stability and Mechanical Properties of Poly(Vinyl Chloride)","authors":"Jinsheng Duan, Zhaogang Liu, Yilin Li, Peijie Jia, Yanhong Hu, Jinxiu Wu","doi":"10.1007/s10904-024-03258-2","DOIUrl":null,"url":null,"abstract":"<p>Magnesium aluminum lanthanum hydrotalcite (MgAlLa-CO<sub>3</sub>-LDHs) was modified with diphenyl phosphate to obtain diphenyl phosphate-intercalated magnesium aluminum lanthanum hydrotalcite (MgAlLa-P-LDHs). The prepared materials, MgAlLa-CO<sub>3</sub>-LDHs and MgAlLa-P-LDHs, were subjected to characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM), to ascertain their structural and morphological characteristics. Subsequently, these hydrotalcite-based thermal stabilizers were incorporated into polyvinyl chloride (PVC) to fabricate composite materials. The comprehensive evaluation of the composite materials’ thermal stability, mechanical properties, and plasticization performance was conducted through thermal aging tests, tensile experiments, and plasticization tests. The research findings indicate a significant enhancement in the thermal stability of PVC materials with the introduction of hydrotalcite-based thermal stabilizers. Additionally, there were observed improvements in mechanical properties and plasticization performance. This study provides a thorough experimental and theoretical foundation for the application of rare earth hydrotalcite-based thermal stabilizers in PVC, offering valuable insights for the development and application of environmentally friendly PVC thermal stabilizers.</p>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03258-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium aluminum lanthanum hydrotalcite (MgAlLa-CO3-LDHs) was modified with diphenyl phosphate to obtain diphenyl phosphate-intercalated magnesium aluminum lanthanum hydrotalcite (MgAlLa-P-LDHs). The prepared materials, MgAlLa-CO3-LDHs and MgAlLa-P-LDHs, were subjected to characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM), to ascertain their structural and morphological characteristics. Subsequently, these hydrotalcite-based thermal stabilizers were incorporated into polyvinyl chloride (PVC) to fabricate composite materials. The comprehensive evaluation of the composite materials’ thermal stability, mechanical properties, and plasticization performance was conducted through thermal aging tests, tensile experiments, and plasticization tests. The research findings indicate a significant enhancement in the thermal stability of PVC materials with the introduction of hydrotalcite-based thermal stabilizers. Additionally, there were observed improvements in mechanical properties and plasticization performance. This study provides a thorough experimental and theoretical foundation for the application of rare earth hydrotalcite-based thermal stabilizers in PVC, offering valuable insights for the development and application of environmentally friendly PVC thermal stabilizers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷酸二苯酯夹杂镁铝镧氢铝酸盐对聚氯乙烯热稳定性和机械性能的影响
用磷酸二苯基对镁铝镧氢滑石(MgAlLa-CO3-LDHs)进行改性,得到磷酸二苯基插层镁铝镧氢滑石(MgAlLa-P-LDHs)。对制备的材料 MgAlLa-CO3-LDHs 和 MgAlLa-P-LDHs 进行了表征技术研究,包括傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)和扫描电子显微镜(SEM),以确定其结构和形态特征。随后,将这些基于氢铝酸盐的热稳定剂加入聚氯乙烯(PVC)中,制成复合材料。通过热老化试验、拉伸实验和塑化试验,对复合材料的热稳定性、机械性能和塑化性能进行了综合评价。研究结果表明,引入基于氢铝酸盐的热稳定剂后,聚氯乙烯材料的热稳定性明显提高。此外,还观察到了机械性能和塑化性能的改善。这项研究为稀土氢铝酸盐热稳定剂在聚氯乙烯中的应用提供了全面的实验和理论基础,为开发和应用环保型聚氯乙烯热稳定剂提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
7.50%
发文量
335
审稿时长
1.8 months
期刊介绍: Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.
期刊最新文献
Environmentally Sustainable Techniques for rGO Synthesis: Focus on Spun Calcination and Clean Technology Advances Synthesis of Nanoscale ZSM-5 Zeolites for the Catalytic Cracking of Oleic Acid into Light Olefins and Aromatics DFT-Based Tailoring of the Thermoelectric and Photovoltaic Response of the Halide Double Perovskite Cs2TlYF6 (Y = Ag, Co) Synthesis, Characterization of Polyphenolic Flavonoid Silymarin Encapsulated Carbon Quantum Dots (SL-CQDs) and Its Anticancer, Antibacterial Potential in In Vitro Antibacterial and Healing Potential of Zn-Al LDHs/Cellulose Acetate Nanocomposite in Burns and Wounds: A Study on Earthworms as a Human Skin Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1