Harnessing the Power of PM6:Y6 Semitransparent Photoanodes by Computational Balancement of Photon Absorption in Photoanode/Photovoltaic Organic Tandems: >7 mA cm−2 Solar Synthetic Fuels Production at Bias-Free Potentials
Francisco Bernal-Texca, Emmanouela Andrioti, Jordi Martorell, Carles Ros
{"title":"Harnessing the Power of PM6:Y6 Semitransparent Photoanodes by Computational Balancement of Photon Absorption in Photoanode/Photovoltaic Organic Tandems: >7 mA cm−2 Solar Synthetic Fuels Production at Bias-Free Potentials","authors":"Francisco Bernal-Texca, Emmanouela Andrioti, Jordi Martorell, Carles Ros","doi":"10.1002/eem2.12809","DOIUrl":null,"url":null,"abstract":"This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules: insufficient photogenerated current. Various organic blends, including PTB7-Th:FOIC, PTB7-Th:O6T-4F, PM6:Y6, and PM6:FM, were systematically tested. When coupled with electron transport layer (ETL) contacts, these blends exhibit exceptional charge separation and extraction, with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm<sup>−2</sup> at 1.23 V<sub>RHE</sub> (oxygen evolution thermodynamic potential). For the first time, a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7 mA cm<sup>−2</sup> at 0 V<sub>RHE</sub> (hydrogen evolution thermodynamic potential) and anodic current onset potentials as low as −0.5 V<sub>RHE</sub>. The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study first demonstrates the potential of organic photoabsorbing blends in overcoming a critical limitation of metal oxide photoanodes in tandem modules: insufficient photogenerated current. Various organic blends, including PTB7-Th:FOIC, PTB7-Th:O6T-4F, PM6:Y6, and PM6:FM, were systematically tested. When coupled with electron transport layer (ETL) contacts, these blends exhibit exceptional charge separation and extraction, with PM6:Y6 achieving saturation photocurrents up to 16.8 mA cm−2 at 1.23 VRHE (oxygen evolution thermodynamic potential). For the first time, a tandem structure utilizing organic photoanodes has been computationally designed and fabricated and the implementation of a double PM6:Y6 photoanode/photovoltaic structure resulted in photogenerated currents exceeding 7 mA cm−2 at 0 VRHE (hydrogen evolution thermodynamic potential) and anodic current onset potentials as low as −0.5 VRHE. The herein-presented organic-based approach paves the way for further exploration of different blend combinations to target specific oxidative reactions by selecting precise donor/acceptor candidates among the multiple existing ones.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.