From follicle to blastocyst: microRNA-34c from follicular fluid-derived extracellular vesicles modulates blastocyst quality

IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Journal of Animal Science and Biotechnology Pub Date : 2024-08-04 DOI:10.1186/s40104-024-01059-8
Camilla Benedetti, Krishna Chaitanya Pavani, Yannick Gansemans, Nima Azari-Dolatabad, Osvaldo Bogado Pascottini, Luc Peelman, Rani Six, Yuan Fan, Xuefeng Guan, Koen Deserranno, Andrea Fernández-Montoro, Joachim Hamacher, Filip Van Nieuwerburgh, Trudee Fair, An Hendrix, Katrien Smits, Ann Van Soom
{"title":"From follicle to blastocyst: microRNA-34c from follicular fluid-derived extracellular vesicles modulates blastocyst quality","authors":"Camilla Benedetti, Krishna Chaitanya Pavani, Yannick Gansemans, Nima Azari-Dolatabad, Osvaldo Bogado Pascottini, Luc Peelman, Rani Six, Yuan Fan, Xuefeng Guan, Koen Deserranno, Andrea Fernández-Montoro, Joachim Hamacher, Filip Van Nieuwerburgh, Trudee Fair, An Hendrix, Katrien Smits, Ann Van Soom","doi":"10.1186/s40104-024-01059-8","DOIUrl":null,"url":null,"abstract":"Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent). Bovine antral follicles were dissected, categorized as small (2–4 mm) or large (5–8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage. Follicular fluid was pooled in 4 groups (4 replicates) based on follicle size and competence of the corresponding oocyte to produce a blastocyst. Follicular fluid-derived EVs were isolated, characterized, and subjected to miRNA-sequencing (Illumina Miseq) to assess differential expression (DE) in the 4 groups. Functional validation of the effect of miR-34c on embryo development was performed by supplementation of mimics and inhibitors during in vitro maturation (IVM). We identified 16 DE miRNAs linked to oocyte competence when follicular size was not considered. Within the large and small follicles, 46 DE miRNAs were driving blastocyst formation in each group. Comparison of EVs from competent small and large follicles revealed 90 DE miRNAs. Cell regulation, cell differentiation, cell cycle, and metabolic process regulation were the most enriched pathways targeted by the DE miRNAs from competent oocytes. We identified bta-miR-34c as the most abundant in follicular fluid containing competent oocytes. Supplementation of miR-34c mimic and inhibitor during IVM did not affect embryo development. However, blastocyst quality, as evidenced by higher cell numbers, was significantly improved following oocyte IVM in the presence of miR-34c mimics, while miR-34c inhibitors resulted in the opposite effect. This study demonstrates the regulatory effect of miRNAs from follicular fluid-derived EVs on oocyte competence acquisition, providing a further basis for understanding the significance of miRNAs in oocyte maturation and embryonic development. Up-regulation of miR-34c in EVs from follicular fluid containing competent oocytes and the positive impact of miR-34c mimics added during IVM on the resulting blastocysts indicate its pivotal role in oocyte competence.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"75 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-024-01059-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent). Bovine antral follicles were dissected, categorized as small (2–4 mm) or large (5–8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage. Follicular fluid was pooled in 4 groups (4 replicates) based on follicle size and competence of the corresponding oocyte to produce a blastocyst. Follicular fluid-derived EVs were isolated, characterized, and subjected to miRNA-sequencing (Illumina Miseq) to assess differential expression (DE) in the 4 groups. Functional validation of the effect of miR-34c on embryo development was performed by supplementation of mimics and inhibitors during in vitro maturation (IVM). We identified 16 DE miRNAs linked to oocyte competence when follicular size was not considered. Within the large and small follicles, 46 DE miRNAs were driving blastocyst formation in each group. Comparison of EVs from competent small and large follicles revealed 90 DE miRNAs. Cell regulation, cell differentiation, cell cycle, and metabolic process regulation were the most enriched pathways targeted by the DE miRNAs from competent oocytes. We identified bta-miR-34c as the most abundant in follicular fluid containing competent oocytes. Supplementation of miR-34c mimic and inhibitor during IVM did not affect embryo development. However, blastocyst quality, as evidenced by higher cell numbers, was significantly improved following oocyte IVM in the presence of miR-34c mimics, while miR-34c inhibitors resulted in the opposite effect. This study demonstrates the regulatory effect of miRNAs from follicular fluid-derived EVs on oocyte competence acquisition, providing a further basis for understanding the significance of miRNAs in oocyte maturation and embryonic development. Up-regulation of miR-34c in EVs from follicular fluid containing competent oocytes and the positive impact of miR-34c mimics added during IVM on the resulting blastocysts indicate its pivotal role in oocyte competence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从卵泡到囊胚:卵泡液衍生细胞外囊泡中的 microRNA-34c 可调节囊胚质量
在卵泡液中,细胞外囊泡 (EV) 通过其载体微RNA(miRNA)引导卵母细胞生长。在这里,我们通过将从单个卵泡液中提取的 EV 中发现的 miRNA 与卵母细胞成为囊胚(有能力)或无能力(无能力)的能力联系起来,研究了 EV 及其所携带的 miRNA 的作用。解剖牛前列腺卵泡,将其分为小卵泡(2-4 毫米)和大卵泡(5-8 毫米),并对相应的卵母细胞进行单独成熟、受精和胚胎培养至囊胚期。根据卵泡大小和相应卵母细胞产生囊胚的能力,将卵泡液分成 4 组(4 个重复)。对卵泡液衍生的 EVs 进行分离、鉴定和 miRNA 测序(Illumina Miseq),以评估 4 组中的差异表达(DE)。通过在体外成熟(IVM)过程中补充模拟物和抑制物,对 miR-34c 对胚胎发育的影响进行了功能验证。在不考虑卵泡大小的情况下,我们发现了16个与卵母细胞能力相关的DE miRNA。在大卵泡和小卵泡中,每组都有 46 个 DE miRNA 驱动囊胚形成。对有能力的小卵泡和大卵泡的 EV 进行比较,发现了 90 个 DE miRNA。细胞调控、细胞分化、细胞周期和代谢过程调控是有能力卵母细胞中 DE miRNA 靶向的最丰富途径。我们发现 bta-miR-34c 在含有合格卵母细胞的卵泡液中含量最高。在 IVM 期间补充 miR-34c 模拟物和抑制剂不会影响胚胎发育。然而,在有 miR-34c 模拟物存在的情况下,卵母细胞体外受精后囊胚的质量(表现为细胞数量增加)明显改善,而 miR-34c 抑制剂则产生相反的效果。这项研究证明了卵泡液衍生的EVs中的miRNA对卵母细胞能力获得的调控作用,为了解miRNA在卵母细胞成熟和胚胎发育中的意义提供了进一步的依据。miR-34c在含有合格卵母细胞的卵泡液EVs中的上调以及在体外受精过程中加入的miR-34c模拟物对所产生的囊胚的积极影响表明,miR-34c在卵母细胞能力中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Animal Science and Biotechnology
Journal of Animal Science and Biotechnology AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
9.90
自引率
2.90%
发文量
822
审稿时长
17 weeks
期刊介绍: Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.
期刊最新文献
Assessment of the dietary amino acid profiles and the relative biomarkers for amino acid balance in the low-protein diets for broiler chickens Bacteriocin Microcin J25’s antibacterial infection effects and novel non-microbial regulatory mechanisms: differential regulation of dopaminergic receptors Dietary bile acids supplementation protects against Salmonella Typhimurium infection via improving intestinal mucosal barrier and gut microbiota composition in broilers Correction: Dietary bile acids supplementation decreases hepatic fat deposition with the involvement of altered gut microbiota and liver bile acids profile in broiler chickens Comparative evaluation of the modulatory role of 1,25-dihydroxy-vitamin D3 on endoplasmic reticulum stress-induced effects in 2D and 3D cultures of the intestinal porcine epithelial cell line IPEC-J2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1