Rechargeable Seawater-Based Chloride-Ion Batteries Enabled by Covalent Surface Chemistry in MXenes.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-08-04 DOI:10.1021/jacs.4c07809
Jinlin Yang, Yu Zhang, Yiming Song, Yanzeng Ge, Si Tang, Jing Li, Hui Zhang, Daoxiong Wu, Xinlong Tian
{"title":"Rechargeable Seawater-Based Chloride-Ion Batteries Enabled by Covalent Surface Chemistry in MXenes.","authors":"Jinlin Yang, Yu Zhang, Yiming Song, Yanzeng Ge, Si Tang, Jing Li, Hui Zhang, Daoxiong Wu, Xinlong Tian","doi":"10.1021/jacs.4c07809","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable aqueous chloride-ion batteries (ACIBs) using Cl<sup>-</sup> ions as charge carriers represent a promising energy-storage technology, especially when natural seawater is introduced as the electrolyte, which can bring remarkable advantages in terms of cost-effectiveness, safety, and environmental sustainability. However, the implementation of this technology is hindered by the scarcity of electrodes capable of reversible chloride-anion storage. Here, we show that a Ti<sub>3</sub>C<sub>2</sub>Cl<sub><i>x</i></sub> MXene with Cl surface terminations enables reversible Cl<sup>-</sup> ion storage in aqueous electrolytes. Further, we developed seawater-based ACIBs that show a high specific capacity and an exceptionally long lifespan (40000 cycles, more than 1 year) in natural seawater electrolyte. The pouch-type cells achieve a high energy density (50 Wh L<sub>cell</sub><sup>-1</sup>) and maintain stable performance across a broad temperature range (-20 to 50 °C). Our investigations reveal that the covalent interaction between Cl<sup>-</sup> ions and Cl-terminated MXene facilitates Cl<sup>-</sup> ion intercalation into the MXene interlayer, promoting rapid ion migration with a low energy barrier (0.10 eV). Moreover, this MXene variant also enables the reversible storage of Br<sup>-</sup> ions in an aqueous electrolyte with a long cycle life. This study may advance the design of anion storage electrodes and enable the development of sustainable aqueous batteries.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c07809","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable aqueous chloride-ion batteries (ACIBs) using Cl- ions as charge carriers represent a promising energy-storage technology, especially when natural seawater is introduced as the electrolyte, which can bring remarkable advantages in terms of cost-effectiveness, safety, and environmental sustainability. However, the implementation of this technology is hindered by the scarcity of electrodes capable of reversible chloride-anion storage. Here, we show that a Ti3C2Clx MXene with Cl surface terminations enables reversible Cl- ion storage in aqueous electrolytes. Further, we developed seawater-based ACIBs that show a high specific capacity and an exceptionally long lifespan (40000 cycles, more than 1 year) in natural seawater electrolyte. The pouch-type cells achieve a high energy density (50 Wh Lcell-1) and maintain stable performance across a broad temperature range (-20 to 50 °C). Our investigations reveal that the covalent interaction between Cl- ions and Cl-terminated MXene facilitates Cl- ion intercalation into the MXene interlayer, promoting rapid ion migration with a low energy barrier (0.10 eV). Moreover, this MXene variant also enables the reversible storage of Br- ions in an aqueous electrolyte with a long cycle life. This study may advance the design of anion storage electrodes and enable the development of sustainable aqueous batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于海水的可充电氯离子电池通过二甲苯共价表面化学反应得以实现。
以 Cl- 离子为电荷载体的可充电含水氯离子电池(ACIBs)是一种前景广阔的储能技术,尤其是在引入天然海水作为电解质的情况下,它在成本效益、安全性和环境可持续性方面具有显著优势。然而,能够进行可逆氯阴离子存储的电极的缺乏阻碍了这项技术的实施。在这里,我们展示了一种具有 Cl 表面端点的 Ti3C2Clx MXene,它能在水性电解质中实现可逆的氯离子存储。此外,我们还开发了基于海水的 ACIB,在天然海水电解质中显示出高比容量和超长寿命(40000 次循环,超过 1 年)。这种袋式电池的能量密度很高(50 Wh Lcell-1),并能在很宽的温度范围(-20 至 50 °C)内保持稳定的性能。我们的研究发现,Cl- 离子与 Cl 端 MXene 之间的共价作用有利于 Cl-离子插层进入 MXene 夹层,从而以较低的能量势垒(0.10 eV)促进离子的快速迁移。此外,这种 MXene 变体还能在水性电解质中可逆地储存 Br- 离子,并具有较长的循环寿命。这项研究可能会推动阴离子存储电极的设计,并促进可持续水性电池的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Synthesis of Mesoporous Catechin Nanoparticles as Biocompatible Drug-Free Antibacterial Mesoformulation Heavy-Atom Tunneling in Ring-Closure Reactions of Beryllium Ozonide Complexes Structural Isomerism in Bimetallic Ag20Cu12 Nanoclusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1