Huiyou Shen, Jing Jiang, Min Zhang, Zhen Lu, Jiuhui Han
{"title":"Homologous Temperature Regulated Hierarchical Nanoporous Structures by Dealloying.","authors":"Huiyou Shen, Jing Jiang, Min Zhang, Zhen Lu, Jiuhui Han","doi":"10.1002/smtd.202400729","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoporous metals, fabricated via dealloying, offer versatile applications but are typically limited to unimodal porous structures, which hinders the integration of conflicting pore-size-dependent properties. A strategy is presented that exploits the homologous temperature (T<sub>H</sub>)-dependent scaling of feature sizes to generate hierarchical porous structures through multistep dealloying at varied T<sub>H</sub> levels, adjusted by altering dealloying temperatures or the material melting points. This technique facilitates the creation of monolithic architectures of bimodal porous nickel and trimodal porous carbon, each characterized by well-defined, self-similar bicontinuous porosities across distinct length scales. These materials merge extensive surface area with efficient mass transport, showing improved current delivery and rate capabilities as electrodes in electrocatalytic hydrogen production and electrochemical supercapacitors. These results highlight T<sub>H</sub> as a unifying parameter for precisely tailoring feature sizes of dealloyed nanoporous materials, opening avenues for developing materials with hierarchical structures that enable novel functionalities.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400729"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400729","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoporous metals, fabricated via dealloying, offer versatile applications but are typically limited to unimodal porous structures, which hinders the integration of conflicting pore-size-dependent properties. A strategy is presented that exploits the homologous temperature (TH)-dependent scaling of feature sizes to generate hierarchical porous structures through multistep dealloying at varied TH levels, adjusted by altering dealloying temperatures or the material melting points. This technique facilitates the creation of monolithic architectures of bimodal porous nickel and trimodal porous carbon, each characterized by well-defined, self-similar bicontinuous porosities across distinct length scales. These materials merge extensive surface area with efficient mass transport, showing improved current delivery and rate capabilities as electrodes in electrocatalytic hydrogen production and electrochemical supercapacitors. These results highlight TH as a unifying parameter for precisely tailoring feature sizes of dealloyed nanoporous materials, opening avenues for developing materials with hierarchical structures that enable novel functionalities.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.