Etienne Bilgo, Maria Vittoria Mancini, Jacques E. Gnambani, Houeffa Adeline Tatiana Dokpomiwa, Shivan Murdochy, Brian Lovett, Raymond St. Leger, Steven P. Sinkins, Abdoulaye Diabate
{"title":"Wolbachia confers protection against the entomopathogenic fungus Metarhizium pingshaense in African Aedes aegypti","authors":"Etienne Bilgo, Maria Vittoria Mancini, Jacques E. Gnambani, Houeffa Adeline Tatiana Dokpomiwa, Shivan Murdochy, Brian Lovett, Raymond St. Leger, Steven P. Sinkins, Abdoulaye Diabate","doi":"10.1111/1758-2229.13316","DOIUrl":null,"url":null,"abstract":"<p>Symbiotic and pathogenic microorganisms such as bacteria and fungi represent promising alternatives to chemical insecticides to respond to the rapid increase of insecticide resistance and vector-borne disease outbreaks. This study investigated the interaction of two strains of <i>Wolbachia</i>, <i>w</i>AlbB and <i>w</i>Au, with the natural entomopathogenic fungi from Burkina Faso <i>Metarhizium pingshaense</i>, known to be lethal against <i>Anopheles</i> mosquitoes. In addition to showing the potential of <i>Metarhizium</i> against African <i>Aedes aegypti</i> wild-type populations, our study shows that the <i>w</i>AlbB and <i>w</i>Au provide a protective advantage against entomopathogenic fungal infections. Compared to controls, fungal-infected <i>w</i>Au and <i>w</i>AlbB-carrying mosquitoes showed higher longevity, without any significant impact on fecundity and fertility phenotypes. This study provides new insights into the complex multipartite interaction among the mosquito host, the <i>Wolbachia</i> endosymbiont and the entomopathogenic fungus that might be employed to control mosquito populations. Future research should investigate the fitness costs of <i>Wolbachia</i>, as well as its spread and prevalence within mosquito populations. Additionally, evaluating the impact of <i>Wolbachia</i> on interventions involving <i>Metarhizium pingshaense</i> through laboratory and semi-field population studies will provide valuable insights into the effectiveness of this combined approach.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13316","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Symbiotic and pathogenic microorganisms such as bacteria and fungi represent promising alternatives to chemical insecticides to respond to the rapid increase of insecticide resistance and vector-borne disease outbreaks. This study investigated the interaction of two strains of Wolbachia, wAlbB and wAu, with the natural entomopathogenic fungi from Burkina Faso Metarhizium pingshaense, known to be lethal against Anopheles mosquitoes. In addition to showing the potential of Metarhizium against African Aedes aegypti wild-type populations, our study shows that the wAlbB and wAu provide a protective advantage against entomopathogenic fungal infections. Compared to controls, fungal-infected wAu and wAlbB-carrying mosquitoes showed higher longevity, without any significant impact on fecundity and fertility phenotypes. This study provides new insights into the complex multipartite interaction among the mosquito host, the Wolbachia endosymbiont and the entomopathogenic fungus that might be employed to control mosquito populations. Future research should investigate the fitness costs of Wolbachia, as well as its spread and prevalence within mosquito populations. Additionally, evaluating the impact of Wolbachia on interventions involving Metarhizium pingshaense through laboratory and semi-field population studies will provide valuable insights into the effectiveness of this combined approach.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.