Investigation of Suitable, Readily Available, Sources of Sulfate-Reducing Bacteria Inoculum, and Evaluation of Sulfate Reduction Rates Achieved at Different pHs

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental Microbiology Reports Pub Date : 2025-03-12 DOI:10.1111/1758-2229.70081
Janet Smith, Craig Sheridan, Lizelle van Dyk, Kevin G. Harding
{"title":"Investigation of Suitable, Readily Available, Sources of Sulfate-Reducing Bacteria Inoculum, and Evaluation of Sulfate Reduction Rates Achieved at Different pHs","authors":"Janet Smith,&nbsp;Craig Sheridan,&nbsp;Lizelle van Dyk,&nbsp;Kevin G. Harding","doi":"10.1111/1758-2229.70081","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the suitability of readily available and naturally occurring sources of microorganisms (inoculum) to use for the cultivation of sulphate-reducing bacteria (SRB) for acid mine drainage (AMD) remediation. The selected inocula included AMD water (AMD), mud (MUD) and reed-bed mud (RM) from the AMD surrounds, mealworms (MW), cow dung (CD) and raw sewage sludge (RS). The suitability of the different inoculum sources was evaluated by comparing the SO<sub>4</sub><sup>2−</sup> reduction and sulfide (S<sup>2−</sup>) production rates at three different pHs. Experimental results showed that the AMD, MW, MUD and CD inoculum did not produce appreciable reduction of SO<sub>4</sub><sup>2−</sup> to S<sup>2−</sup> and were unsuitable sources of SRB inoculum. The inoculum evaluated in pH 2 media did not achieve SO<sub>4</sub><sup>2−</sup> reduction. Of the inoculum assessed in pH 4 media, only the RM inoculum achieved SO<sub>4</sub><sup>2−</sup> reduction (40%) with S<sup>2−</sup> production (36 mg/L). In contrast, a notable S<sup>2−</sup> production, RS (114 mg/L) and RM (99 mg/L), accompanied the SO<sub>4</sub><sup>2−</sup> reduction achieved in the pH 7.5 RS (44%) and RM (30%) samples. The improved S<sup>2−</sup><sub>produced</sub>/SO<sub>4</sub><sup>2−</sup><sub>removed</sub> conversion ratios for samples pH 7.5 RS (0.14) and pH 7.5 RM (0.17) are indicative of increased SRB activity and the suitability of these inoculum as SRB sources.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70081","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the suitability of readily available and naturally occurring sources of microorganisms (inoculum) to use for the cultivation of sulphate-reducing bacteria (SRB) for acid mine drainage (AMD) remediation. The selected inocula included AMD water (AMD), mud (MUD) and reed-bed mud (RM) from the AMD surrounds, mealworms (MW), cow dung (CD) and raw sewage sludge (RS). The suitability of the different inoculum sources was evaluated by comparing the SO42− reduction and sulfide (S2−) production rates at three different pHs. Experimental results showed that the AMD, MW, MUD and CD inoculum did not produce appreciable reduction of SO42− to S2− and were unsuitable sources of SRB inoculum. The inoculum evaluated in pH 2 media did not achieve SO42− reduction. Of the inoculum assessed in pH 4 media, only the RM inoculum achieved SO42− reduction (40%) with S2− production (36 mg/L). In contrast, a notable S2− production, RS (114 mg/L) and RM (99 mg/L), accompanied the SO42− reduction achieved in the pH 7.5 RS (44%) and RM (30%) samples. The improved S2−produced/SO42−removed conversion ratios for samples pH 7.5 RS (0.14) and pH 7.5 RM (0.17) are indicative of increased SRB activity and the suitability of these inoculum as SRB sources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
期刊最新文献
Issue Information Issue Information Investigation of Suitable, Readily Available, Sources of Sulfate-Reducing Bacteria Inoculum, and Evaluation of Sulfate Reduction Rates Achieved at Different pHs Investigation of Suitable, Readily Available, Sources of Sulfate-Reducing Bacteria Inoculum, and Evaluation of Sulfate Reduction Rates Achieved at Different pHs Phenyl Acid Induced Inhibition of Methanogenesis in CO2 Reducing Organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1