Lucie O M Perillat, Tatianna W Y Wong, Eleonora Maino, Abdalla Ahmed, Ori Scott, Elzbieta Hyatt, Paul Delgado-Olguin, Shagana Visuvanathan, Evgueni A Ivakine, Ronald D Cohn
{"title":"Generation and characterization of a novel mouse model of Becker Muscular Dystrophy with a deletion of exons 52 to 55.","authors":"Lucie O M Perillat, Tatianna W Y Wong, Eleonora Maino, Abdalla Ahmed, Ori Scott, Elzbieta Hyatt, Paul Delgado-Olguin, Shagana Visuvanathan, Evgueni A Ivakine, Ronald D Cohn","doi":"10.1242/dmm.050595","DOIUrl":null,"url":null,"abstract":"<p><p>Becker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion. To delineate the long-term effects of this deletion, we studied these mice over 52 weeks by performing histology and echocardiography analyses and assessing motor functions. Our results suggest that a truncated dystrophin is sufficient to maintain wildtype-like muscle and heart histology and functions in young mice. However, the truncated protein appears insufficient to maintain normal muscle homeostasis and protect against exercise-induced damage at 52 weeks. To further delineate the effects of this exon52-55 in-frame deletion, we performed RNA-Seq pre- and post-exercise and identified several differentially expressed pathways that reflect the abnormal muscle phenotype observed at 52 weeks in the BMD model.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.050595","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Becker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion. To delineate the long-term effects of this deletion, we studied these mice over 52 weeks by performing histology and echocardiography analyses and assessing motor functions. Our results suggest that a truncated dystrophin is sufficient to maintain wildtype-like muscle and heart histology and functions in young mice. However, the truncated protein appears insufficient to maintain normal muscle homeostasis and protect against exercise-induced damage at 52 weeks. To further delineate the effects of this exon52-55 in-frame deletion, we performed RNA-Seq pre- and post-exercise and identified several differentially expressed pathways that reflect the abnormal muscle phenotype observed at 52 weeks in the BMD model.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.