{"title":"HRV and EEG correlates of well-being using ultra-short, portable, and low-cost measurements.","authors":"Cédric Cannard, Arnaud Delorme, Helané Wahbeh","doi":"10.1016/bs.pbr.2024.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable electroencephalography (EEG) and electrocardiography (ECG) devices may offer a non-invasive, user-friendly, and cost-effective approach for assessing well-being (WB) in real-world settings. However, challenges remain in dealing with signal artifacts (such as environmental noise and movements) and identifying robust biomarkers. We evaluated the feasibility of using portable hardware to identify potential EEG and heart-rate variability (HRV) correlates of WB. We collected simultaneous ultrashort (2-min) EEG and ECG data from 60 individuals in real-world settings using a wrist ECG electrode connected to a 4-channel wearable EEG headset. These data were processed, assessed for signal quality, and analyzed using the open-source EEGLAB BrainBeats plugin to extract several theory-driven metrics as potential correlates of WB. Namely, the individual alpha frequency (IAF), frontal and posterior alpha asymmetry, and signal entropy for EEG. SDNN, the low/high frequency (LF/HF) ratio, the Poincaré SD1/SD2 ratio, and signal entropy for HRV. We assessed potential associations between these features and the main WB dimensions (hedonic, eudaimonic, global, physical, and social) implementing a pairwise correlation approach, robust Spearman's correlations, and corrections for multiple comparisons. Only eight files showed poor signal quality and were excluded from the analysis. Eudaimonic (psychological) WB was positively correlated with SDNN and the LF/HF ratio. EEG posterior alpha asymmetry was positively correlated with Physical WB (i.e., sleep and pain levels). No relationships were found with the other metrics, or between EEG and HRV metrics. These physiological metrics enable a quick, objective assessment of well-being in real-world settings using scalable, user-friendly tools.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"287 ","pages":"91-109"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2024.04.004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable electroencephalography (EEG) and electrocardiography (ECG) devices may offer a non-invasive, user-friendly, and cost-effective approach for assessing well-being (WB) in real-world settings. However, challenges remain in dealing with signal artifacts (such as environmental noise and movements) and identifying robust biomarkers. We evaluated the feasibility of using portable hardware to identify potential EEG and heart-rate variability (HRV) correlates of WB. We collected simultaneous ultrashort (2-min) EEG and ECG data from 60 individuals in real-world settings using a wrist ECG electrode connected to a 4-channel wearable EEG headset. These data were processed, assessed for signal quality, and analyzed using the open-source EEGLAB BrainBeats plugin to extract several theory-driven metrics as potential correlates of WB. Namely, the individual alpha frequency (IAF), frontal and posterior alpha asymmetry, and signal entropy for EEG. SDNN, the low/high frequency (LF/HF) ratio, the Poincaré SD1/SD2 ratio, and signal entropy for HRV. We assessed potential associations between these features and the main WB dimensions (hedonic, eudaimonic, global, physical, and social) implementing a pairwise correlation approach, robust Spearman's correlations, and corrections for multiple comparisons. Only eight files showed poor signal quality and were excluded from the analysis. Eudaimonic (psychological) WB was positively correlated with SDNN and the LF/HF ratio. EEG posterior alpha asymmetry was positively correlated with Physical WB (i.e., sleep and pain levels). No relationships were found with the other metrics, or between EEG and HRV metrics. These physiological metrics enable a quick, objective assessment of well-being in real-world settings using scalable, user-friendly tools.
期刊介绍:
Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.