Generalized Linear Mixed Effects Modeling (GLMM) of Functional Analysis Graphical Construction Elements on Visual Analysis.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-30 eCollection Date: 2024-06-01 DOI:10.1007/s40614-024-00406-4
Art Dowdy, Kasey Prime, Corey Peltier
{"title":"Generalized Linear Mixed Effects Modeling (GLMM) of Functional Analysis Graphical Construction Elements on Visual Analysis.","authors":"Art Dowdy, Kasey Prime, Corey Peltier","doi":"10.1007/s40614-024-00406-4","DOIUrl":null,"url":null,"abstract":"<p><p>Multielement designs are the quintessential design tactic to evaluate outcomes of a functional analysis in applied behavior analysis. Protecting the credibility of the data collection, graphing, and visual analysis processes from a functional analysis increases the likelihood that optimal intervention decisions are made for individuals. Time-series graphs and visual analysis are the most prevalent method used to interpret functional analysis data. The current project included two principal aims. First, we tested whether the graphical construction manipulation of the x-to-y axes ratio (i.e., data points per x- axis to y-axis ratio [DPPXYR]) influenced visual analyst's detection of a function on 32 multielement design graphs displaying functional analyses. Second, we investigated the alignment between board certified behavior analysts (BCBAs; <i>N</i> = 59) visual analysis with the modified visual inspection criteria (Roane et al., <i>Journal of Applied Behavior Analysis</i>, <i>46</i>, 130-146, 2013). We found that the crossed GLMM that included random slopes, random intercepts, and did not include an interaction effect (AIC = 1406.1, BIC = 1478.2) performed optimally. Second, alignment between BCBAs decisions and the MVI appeared to be low across data sets. We also leveraged current best practices in Open Science for raw data and analysis transparency.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s40614-024-00406-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Multielement designs are the quintessential design tactic to evaluate outcomes of a functional analysis in applied behavior analysis. Protecting the credibility of the data collection, graphing, and visual analysis processes from a functional analysis increases the likelihood that optimal intervention decisions are made for individuals. Time-series graphs and visual analysis are the most prevalent method used to interpret functional analysis data. The current project included two principal aims. First, we tested whether the graphical construction manipulation of the x-to-y axes ratio (i.e., data points per x- axis to y-axis ratio [DPPXYR]) influenced visual analyst's detection of a function on 32 multielement design graphs displaying functional analyses. Second, we investigated the alignment between board certified behavior analysts (BCBAs; N = 59) visual analysis with the modified visual inspection criteria (Roane et al., Journal of Applied Behavior Analysis, 46, 130-146, 2013). We found that the crossed GLMM that included random slopes, random intercepts, and did not include an interaction effect (AIC = 1406.1, BIC = 1478.2) performed optimally. Second, alignment between BCBAs decisions and the MVI appeared to be low across data sets. We also leveraged current best practices in Open Science for raw data and analysis transparency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能分析的广义线性混合效应建模 (GLMM) 可视化分析的图形构建要素。
多元素设计是应用行为分析中评估功能分析结果的典型设计策略。保护功能分析中数据收集、图表绘制和可视化分析过程的可信度,可以提高为个人做出最佳干预决策的可能性。时间序列图和可视化分析是解释功能分析数据最常用的方法。当前的项目包括两个主要目标。首先,我们测试了在显示功能分析的 32 张多元素设计图上,对 x 轴与 y 轴比率(即每个 x 轴与 y 轴的数据点比率 [DPPXYR])的图形构造操作是否会影响视觉分析师对功能的检测。其次,我们研究了经委员会认证的行为分析师(BCBAs;N = 59)的视觉分析与修改后的视觉检查标准(Roane 等人,《应用行为分析杂志》,46, 130-146, 2013 年)之间的一致性。我们发现,包含随机斜率、随机截距且不包含交互效应的交叉 GLMM(AIC = 1406.1,BIC = 1478.2)表现最佳。其次,在各数据集中,BCBA 的决定与 MVI 之间的一致性似乎较低。我们还利用当前开放科学的最佳实践,实现了原始数据和分析的透明化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1