Emerging roles of ATG9/ATG9A in autophagy: implications for cell and neurobiology.

Autophagy Pub Date : 2024-11-01 Epub Date: 2024-08-04 DOI:10.1080/15548627.2024.2384349
Jiyoung Choi, Haeun Jang, Zhao Xuan, Daehun Park
{"title":"Emerging roles of ATG9/ATG9A in autophagy: implications for cell and neurobiology.","authors":"Jiyoung Choi, Haeun Jang, Zhao Xuan, Daehun Park","doi":"10.1080/15548627.2024.2384349","DOIUrl":null,"url":null,"abstract":"<p><p>Atg9, the only transmembrane protein among many autophagy-related proteins, was first identified in the year 2000 in yeast. Two homologs of Atg9, ATG9A and ATG9B, have been found in mammals. While ATG9B shows a tissue-specific expression pattern, such as in the placenta and pituitary gland, ATG9A is ubiquitously expressed. Additionally, ATG9A deficiency leads to severe defects not only at the molecular and cellular levels but also at the organismal level, suggesting key and fundamental roles for ATG9A. The subcellular localization of ATG9A on small vesicles and its functional relevance to autophagy have suggested a potential role for ATG9A in the lipid supply during autophagosome biogenesis. Nevertheless, the precise role of ATG9A in the autophagic process has remained a long-standing mystery, especially in neurons. Recent findings, however, including structural, proteomic, and biochemical analyses, have provided new insights into its function in the expansion of the phagophore membrane. In this review, we aim to understand various aspects of ATG9 (in invertebrates and plants)/ATG9A (in mammals), including its localization, trafficking, and other functions, in nonneuronal cells and neurons by comparing recent discoveries related to ATG9/ATG9A and proposing directions for future research.<b>Abbreviation</b>: AP-4: adaptor protein complex 4; ATG: autophagy related; cKO: conditional knockout; CLA-1: CLArinet (functional homolog of cytomatrix at the active zone proteins piccolo and fife); cryo-EM: cryogenic electron microscopy; ER: endoplasmic reticulum; KO: knockout; PAS: phagophore assembly site; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SV: synaptic vesicle; TGN: trans-Golgi network; ULK: unc-51 like autophagy activating kinase; WIPI2: WD repeat domain, phosphoinositide interacting 2.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2373-2387"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2384349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atg9, the only transmembrane protein among many autophagy-related proteins, was first identified in the year 2000 in yeast. Two homologs of Atg9, ATG9A and ATG9B, have been found in mammals. While ATG9B shows a tissue-specific expression pattern, such as in the placenta and pituitary gland, ATG9A is ubiquitously expressed. Additionally, ATG9A deficiency leads to severe defects not only at the molecular and cellular levels but also at the organismal level, suggesting key and fundamental roles for ATG9A. The subcellular localization of ATG9A on small vesicles and its functional relevance to autophagy have suggested a potential role for ATG9A in the lipid supply during autophagosome biogenesis. Nevertheless, the precise role of ATG9A in the autophagic process has remained a long-standing mystery, especially in neurons. Recent findings, however, including structural, proteomic, and biochemical analyses, have provided new insights into its function in the expansion of the phagophore membrane. In this review, we aim to understand various aspects of ATG9 (in invertebrates and plants)/ATG9A (in mammals), including its localization, trafficking, and other functions, in nonneuronal cells and neurons by comparing recent discoveries related to ATG9/ATG9A and proposing directions for future research.Abbreviation: AP-4: adaptor protein complex 4; ATG: autophagy related; cKO: conditional knockout; CLA-1: CLArinet (functional homolog of cytomatrix at the active zone proteins piccolo and fife); cryo-EM: cryogenic electron microscopy; ER: endoplasmic reticulum; KO: knockout; PAS: phagophore assembly site; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SV: synaptic vesicle; TGN: trans-Golgi network; ULK: unc-51 like autophagy activating kinase; WIPI2: WD repeat domain, phosphoinositide interacting 2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATG9/ATG9A 在自噬中的新作用:对细胞和神经生物学的影响。
Atg9是众多自噬相关蛋白中唯一的跨膜蛋白,于2000年首次在酵母中被发现。在哺乳动物中发现了 Atg9 的两个同源物 ATG9A 和 ATG9B。ATG9B 在胎盘和脑垂体等组织中有特异性表达,而 ATG9A 则是普遍表达的。此外,ATG9A 缺乏不仅会导致分子和细胞水平的严重缺陷,还会导致生物体水平的严重缺陷,这表明 ATG9A 起着关键和基础性的作用。ATG9A在小囊泡上的亚细胞定位及其与自噬的功能相关性表明,ATG9A在自噬体生物形成过程中的脂质供应中可能发挥作用。然而,ATG9A 在自噬过程中的确切作用一直是个谜,尤其是在神经元中。然而,最近的研究发现,包括结构、蛋白质组和生化分析,为了解 ATG9A 在吞噬膜扩张过程中的功能提供了新的视角。在这篇综述中,我们旨在通过比较与 ATG9/ATG9A 相关的最新发现,了解 ATG9(在无脊椎动物和植物中)/ATG9A(在哺乳动物中)的各个方面,包括其在非神经细胞和神经元中的定位、贩运和其他功能,并提出未来的研究方向:缩写:AP-4:适配蛋白复合物 4;ATG:自噬相关;cKO:条件性基因敲除;CLA-1:CLArinet(活性区细胞矩阵蛋白 piccolo 和 fife 的功能同源物);cryo-EM:ER:内质网;KO:基因敲除;PAS:吞噬体装配位点;PtdIns3K:III 类磷脂酰肌醇 3-激酶;PtdIns3P:磷脂酰肌醇-3-磷酸;RB1CC1/FIP200:SV:突触小泡;TGN:跨高尔基体网络;ULK:unc-51 类自噬激活激酶;WIPI2:WD 重复结构域,磷脂肌醇相互作用 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comprehensive knockout analysis of the RAB family small GTPases reveals an overlapping role of RAB2 and RAB14 in autophagosome maturation. GORASP2 promotes phagophore closure and autophagosome maturation into autolysosomes. MANF facilitates breast cancer cell survival under glucose-starvation conditions via PRKN-mediated mitophagy regulation. TRIM21-mediated ubiquitination of SQSTM1/p62 abolishes its Ser403 phosphorylation and enhances palmitic acid cytotoxicity. BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1