首页 > 最新文献

Autophagy最新文献

英文 中文
A PRKN-independent mechanism regulating cardiac mitochondrial quality control. 独立于 PRKN 的心脏线粒体质量控制调节机制
Pub Date : 2024-11-17 DOI: 10.1080/15548627.2024.2423329
Wenjuan Wang, Jinbao Liu, Jie Li, Huabo Su

PRKN-dependent mitophagy plays a crucial role in maintaining mitochondrial health. Yet, PRKN-deficient mice do not exhibit mitochondrial and cardiac phenotypes at baseline, suggesting the existence of other mitochondrial ubiquitin (Ub) ligases. Here, we discuss our recent work identifying RNF7/RBX2 as a novel mitochondrial Ub ligase. Upon mitochondrial depolarization, RNF7 proteins are recruited to the mitochondria, where they directly ubiquitinate mitochondrial proteins and stabilize PINK1 expression, thereby promoting the clearance of damaged mitochondria and regulating mitochondrial turnover in the heart. The actions of RNF7 in mitochondria do not require PRKN. Ablation of Rnf7 in mouse hearts results in severe mitochondrial dysfunction and heart failure. Our findings demonstrate that RNF7 is indispensable for mitochondrial turnover and cardiac homeostasis. These results open new avenues for exploring new PRKN-independent pathways that regulate mitophagy, which could have significant implications for developing therapeutic interventions for cardiac diseases.

依赖于 PRKN 的有丝分裂在维持线粒体健康方面起着至关重要的作用。然而,PRKN 缺失的小鼠并不表现出线粒体和心脏的基线表型,这表明存在其他线粒体泛素(Ub)连接酶。在此,我们讨论了我们最近的工作,发现 RNF7/RBX2 是一种新型线粒体 Ub 连接酶。线粒体去极化后,RNF7 蛋白被招募到线粒体,在那里它们直接泛素化线粒体蛋白并稳定 PINK1 的表达,从而促进受损线粒体的清除并调节心脏中线粒体的周转。RNF7 在线粒体中的作用不需要 PRKN。在小鼠心脏中消减 Rnf7 会导致严重的线粒体功能障碍和心力衰竭。我们的研究结果表明,RNF7 对线粒体周转和心脏稳态不可或缺。这些结果为探索不依赖于 PRKN 的调控线粒体吞噬的新途径开辟了新途径,这可能对开发心脏疾病的治疗干预措施具有重要意义。
{"title":"A PRKN-independent mechanism regulating cardiac mitochondrial quality control.","authors":"Wenjuan Wang, Jinbao Liu, Jie Li, Huabo Su","doi":"10.1080/15548627.2024.2423329","DOIUrl":"10.1080/15548627.2024.2423329","url":null,"abstract":"<p><p>PRKN-dependent mitophagy plays a crucial role in maintaining mitochondrial health. Yet, PRKN-deficient mice do not exhibit mitochondrial and cardiac phenotypes at baseline, suggesting the existence of other mitochondrial ubiquitin (Ub) ligases. Here, we discuss our recent work identifying RNF7/RBX2 as a novel mitochondrial Ub ligase. Upon mitochondrial depolarization, RNF7 proteins are recruited to the mitochondria, where they directly ubiquitinate mitochondrial proteins and stabilize PINK1 expression, thereby promoting the clearance of damaged mitochondria and regulating mitochondrial turnover in the heart. The actions of RNF7 in mitochondria do not require PRKN. Ablation of <i>Rnf7</i> in mouse hearts results in severe mitochondrial dysfunction and heart failure. Our findings demonstrate that RNF7 is indispensable for mitochondrial turnover and cardiac homeostasis. These results open new avenues for exploring new PRKN-independent pathways that regulate mitophagy, which could have significant implications for developing therapeutic interventions for cardiac diseases.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PINK1-deficiency facilitates mitochondrial iron accumulation and colon tumorigenesis. PINK1 缺失会促进线粒体铁积累和结肠肿瘤发生。
Pub Date : 2024-11-16 DOI: 10.1080/15548627.2024.2425594
Mariella Arcos, Lavanya Goodla, Hyeoncheol Kim, Sharina P Desai, Rui Liu, Kunlun Yin, Zhaoli Liu, David R Martin, Xiang Xue
<p><p>Mitophagy, the process by which cells eliminate damaged mitochondria, is mediated by PINK1 (PTEN induced kinase 1). Our recent research indicates that PINK1 functions as a tumor suppressor in colorectal cancer by regulating cellular metabolism. Interestingly, PINK1 ablation activated the NLRP3 (NLR family pyrin domain containing 3) inflammasome, releasing IL1B (interleukin 1 beta). However, inhibiting the NLRP3-IL1B signaling pathway with an IL1R (interleukin 1 receptor) antagonist or NLRP3 inhibitor did not hinder colon tumor growth after PINK1 loss. To identify druggable targets in PINK1-deficient tumors, ribonucleic acid sequencing analysis was performed on colon tumors from <i>pink1</i> knockout and wild-type mice. Gene Set Enrichment Analysis highlighted the enrichment of iron ion transmembrane transporter activity. Subsequent qualitative polymerase chain reaction and western blot analysis revealed an increase in mitochondrial iron transporters, including mitochondrial calcium uniporter, in PINK1-deficient colon tumor cells and tissues. Live-cell iron staining demonstrated elevated cellular and mitochondrial iron levels in PINK1-deficient cells. Clinically used drugs deferiprone and minocycline reduced mitochondrial iron and superoxide levels, resulting in decreased colon tumor cell growth <i>in vitro</i> and <i>in vivo</i>. Manipulating the mitochondrial iron uptake protein MCU (mitochondrial calcium uniporter) also affected cell and xenograft tumor growth. This study suggests that therapies aimed at reducing mitochondrial iron levels may effectively inhibit colon tumor growth, particularly in patients with low PINK1 expression.<b>Abbreviation</b>: ANOVA: analysis of variance; APC: adenomatous polyposis coli; cAMP: cyclic adenosine monophosphate; CDX2: caudal type homeobox 2; CGAS: cyclic GMP-AMP synthase; CRC: colorectal cancer; DNA: deoxyribonucleic acid; DFP: deferiprone; DMEM: Dulbecco's modified Eagle medium; DSS: dextran sodium sulfate; ERT2-Cre: Cre recombinase fused to a triple mutant form of the human estrogen receptor; EV: empty vector; GLB: glybenclamide/glyburide; H&E: hematoxylin and eosin; ICP-MS: inductively coupled plasma mass spectrometer; IL1B: interleukin 1 beta; kDa: kilodalton; MCU: mitochondrial calcium uniporter; MKI67: marker of proliferation Ki-67; mRNA: messenger ribonucleic acid; MTT: 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide; NLRP3: NLR family pyrin domain containing 3; OE: overexpression; PBS: phosphate-buffered saline; p-CREB: phosphorylated cAMP responsive element binding protein; PINK1: PTEN induced kinase 1; p-PRKAA/AMPK: phosphorylated protein kinase AMP-activated catalytic subunit alpha; qPCR: qualitative polymerase chain reaction; RNA-seq: ribonucleic acid sequencing; ROS: reactive oxygen species; sg: single guide; sh: short hairpin; SLC25A28: solute carrier family 25 member 28; SLC25A37/MFRN: solute carrier family 25 member 37; STING1: stimulator of interferon response cGAMP inte
细胞消除受损线粒体的过程是由 PINK1(PTEN 诱导激酶 1)介导的。我们最近的研究表明,PINK1 通过调节细胞新陈代谢在结直肠癌中发挥肿瘤抑制因子的功能。有趣的是,PINK1 消融会激活 NLRP3(NLR 家族含吡咯啉结构域 3)炎性体,释放 IL1B(白细胞介素 1 beta)。然而,使用IL1R(白细胞介素1受体)拮抗剂或NLRP3抑制剂抑制NLRP3-IL1B信号通路并不能阻止PINK1缺失后结肠肿瘤的生长。为了确定 PINK1 缺失肿瘤中的药物靶点,对粉红 1 基因敲除小鼠和野生型小鼠的结肠肿瘤进行了核糖核酸测序分析。基因组富集分析突显了铁离子跨膜转运体活性的富集。随后的定性聚合酶链反应和 Western 印迹分析显示,在 PINK1 基因缺陷的结肠肿瘤细胞和组织中,线粒体铁转运体(包括线粒体钙离子单转运体)有所增加。活细胞铁染色显示,PINK1 基因缺陷细胞中的细胞和线粒体铁含量升高。临床常用药物去铁酮和米诺环素可降低线粒体铁和超氧化物水平,从而减少结肠肿瘤细胞在体外和体内的生长。操纵线粒体铁摄取蛋白 MCU(线粒体钙单运蛋白)也会影响细胞和异种移植肿瘤的生长。这项研究表明,旨在降低线粒体铁含量的疗法可有效抑制结肠肿瘤的生长,尤其是在 PINK1 表达量较低的患者中。
{"title":"PINK1-deficiency facilitates mitochondrial iron accumulation and colon tumorigenesis.","authors":"Mariella Arcos, Lavanya Goodla, Hyeoncheol Kim, Sharina P Desai, Rui Liu, Kunlun Yin, Zhaoli Liu, David R Martin, Xiang Xue","doi":"10.1080/15548627.2024.2425594","DOIUrl":"10.1080/15548627.2024.2425594","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Mitophagy, the process by which cells eliminate damaged mitochondria, is mediated by PINK1 (PTEN induced kinase 1). Our recent research indicates that PINK1 functions as a tumor suppressor in colorectal cancer by regulating cellular metabolism. Interestingly, PINK1 ablation activated the NLRP3 (NLR family pyrin domain containing 3) inflammasome, releasing IL1B (interleukin 1 beta). However, inhibiting the NLRP3-IL1B signaling pathway with an IL1R (interleukin 1 receptor) antagonist or NLRP3 inhibitor did not hinder colon tumor growth after PINK1 loss. To identify druggable targets in PINK1-deficient tumors, ribonucleic acid sequencing analysis was performed on colon tumors from &lt;i&gt;pink1&lt;/i&gt; knockout and wild-type mice. Gene Set Enrichment Analysis highlighted the enrichment of iron ion transmembrane transporter activity. Subsequent qualitative polymerase chain reaction and western blot analysis revealed an increase in mitochondrial iron transporters, including mitochondrial calcium uniporter, in PINK1-deficient colon tumor cells and tissues. Live-cell iron staining demonstrated elevated cellular and mitochondrial iron levels in PINK1-deficient cells. Clinically used drugs deferiprone and minocycline reduced mitochondrial iron and superoxide levels, resulting in decreased colon tumor cell growth &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt;. Manipulating the mitochondrial iron uptake protein MCU (mitochondrial calcium uniporter) also affected cell and xenograft tumor growth. This study suggests that therapies aimed at reducing mitochondrial iron levels may effectively inhibit colon tumor growth, particularly in patients with low PINK1 expression.&lt;b&gt;Abbreviation&lt;/b&gt;: ANOVA: analysis of variance; APC: adenomatous polyposis coli; cAMP: cyclic adenosine monophosphate; CDX2: caudal type homeobox 2; CGAS: cyclic GMP-AMP synthase; CRC: colorectal cancer; DNA: deoxyribonucleic acid; DFP: deferiprone; DMEM: Dulbecco's modified Eagle medium; DSS: dextran sodium sulfate; ERT2-Cre: Cre recombinase fused to a triple mutant form of the human estrogen receptor; EV: empty vector; GLB: glybenclamide/glyburide; H&E: hematoxylin and eosin; ICP-MS: inductively coupled plasma mass spectrometer; IL1B: interleukin 1 beta; kDa: kilodalton; MCU: mitochondrial calcium uniporter; MKI67: marker of proliferation Ki-67; mRNA: messenger ribonucleic acid; MTT: 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide; NLRP3: NLR family pyrin domain containing 3; OE: overexpression; PBS: phosphate-buffered saline; p-CREB: phosphorylated cAMP responsive element binding protein; PINK1: PTEN induced kinase 1; p-PRKAA/AMPK: phosphorylated protein kinase AMP-activated catalytic subunit alpha; qPCR: qualitative polymerase chain reaction; RNA-seq: ribonucleic acid sequencing; ROS: reactive oxygen species; sg: single guide; sh: short hairpin; SLC25A28: solute carrier family 25 member 28; SLC25A37/MFRN: solute carrier family 25 member 37; STING1: stimulator of interferon response cGAMP inte","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering melanophagy: role of the PTK2-ITCH-MLANA-OPTN cascade on melanophagy in melanocytes. 解密黑色素吞噬:PTK2-ITCH-MLANA-OPTN 级联在黑色素细胞黑色素吞噬中的作用。
Pub Date : 2024-11-12 DOI: 10.1080/15548627.2024.2421695
Na Yeon Park, Doo Sin Jo, Hyun Jun Park, Ji-Eun Bae, Yong Hwan Kim, Joon Bum Kim, Ha Jung Lee, Sung Hyun Kim, Hyunjung Choi, Hyun-Shik Lee, Tamotsu Yoshimori, Dong-Seok Lee, Jin-A Lee, Pansoo Kim, Dong-Hyung Cho

Melanosomes play a pivotal role in skin color and photoprotection. In contrast to the well-elucidated pathway of melanosome biogenesis, the process of melanosome degradation, referred to as melanophagy, is largely unexplored. Previously, we discovered that 3,4,5-trimethoxycinnamate thymol ester (TCTE) effectively inhibits skin pigmentation by activating melanophagy. In this study, we discovered a new regulatory signaling cascade that controls melanophagy in TCTE-treated melanocytes. ITCH (itchy E3 ubiquitin protein ligase) facilitates ubiquitination of the melanosome membrane protein MLANA (melan-A) during TCTE-induced melanophagy. This ubiquitinated MLANA is then recognized by an autophagy receptor protein, OPTN (optineurin). Additionally, a phospho-kinase antibody array revealed that TCTE activates PTK2 (protein tyrosine kinase 2), which phosphorylates ITCH, enhancing the ubiquitination of MLANA. Furthermore, inhibition of either PTK2 or ITCH disrupts the ubiquitination of MLANA and the MLANA-OPTN interaction in TCTE-treated cells. Taken together, our findings highlight the critical role of the PTK2-ITCH-MLANA-OPTN cascade in orchestrating melanophagy progression.Abbreviations: α-MSH: alpha-melanocyte-stimulating hormone; dichlone: 2,3-dichloro-1,4-naphthoquinone; ITCH: itchy E3 ubiquitin protein ligase; MITF: melanocyte inducing transcription factor; MLANA: melan-A; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PINK1: PTEN induced kinase 1; PTK2: protein tyrosine kinase 2; SQSTM1/p62: sequestosome 1; TCTE: 3,4,5-trimethoxycinnamate thymol ester; TPC2: two pore segment channel 2; VDAC1: voltage dependent anion channel 1.

黑色素体在肤色和光保护方面起着关键作用。与已阐明的黑色素小体生物生成途径不同,黑色素小体的降解过程(即黑色素吞噬)在很大程度上尚未被探索。此前,我们发现 3,4,5-三甲氧基肉桂酸胸腺酚酯(TCTE)能通过激活黑色素吞噬作用有效抑制皮肤色素沉着。在这项研究中,我们发现了一种新的调控信号级联,它能控制经 TCTE 处理的黑色素细胞中的黑色素吞噬。在TCTE诱导的黑色素吞噬过程中,ITCH(痒E3泛素蛋白连接酶)促进了黑色素体膜蛋白MLANA(melan-A)的泛素化。泛素化后的 MLANA 会被自噬受体蛋白 OPTN(optineurin)识别。此外,磷酸激酶抗体阵列显示,TCTE 能激活 PTK2(蛋白酪氨酸激酶 2),使 ITCH 磷酸化,从而增强 MLANA 的泛素化。此外,抑制 PTK2 或 ITCH 会破坏 TCTE 处理细胞中 MLANA 的泛素化和 MLANA-OPTN 的相互作用。综上所述,我们的研究结果凸显了 PTK2-ITCH-MLANA-OPTN 级联在协调黑色素吞噬过程中的关键作用。
{"title":"Deciphering melanophagy: role of the PTK2-ITCH-MLANA-OPTN cascade on melanophagy in melanocytes.","authors":"Na Yeon Park, Doo Sin Jo, Hyun Jun Park, Ji-Eun Bae, Yong Hwan Kim, Joon Bum Kim, Ha Jung Lee, Sung Hyun Kim, Hyunjung Choi, Hyun-Shik Lee, Tamotsu Yoshimori, Dong-Seok Lee, Jin-A Lee, Pansoo Kim, Dong-Hyung Cho","doi":"10.1080/15548627.2024.2421695","DOIUrl":"10.1080/15548627.2024.2421695","url":null,"abstract":"<p><p>Melanosomes play a pivotal role in skin color and photoprotection. In contrast to the well-elucidated pathway of melanosome biogenesis, the process of melanosome degradation, referred to as melanophagy, is largely unexplored. Previously, we discovered that 3,4,5-trimethoxycinnamate thymol ester (TCTE) effectively inhibits skin pigmentation by activating melanophagy. In this study, we discovered a new regulatory signaling cascade that controls melanophagy in TCTE-treated melanocytes. ITCH (itchy E3 ubiquitin protein ligase) facilitates ubiquitination of the melanosome membrane protein MLANA (melan-A) during TCTE-induced melanophagy. This ubiquitinated MLANA is then recognized by an autophagy receptor protein, OPTN (optineurin). Additionally, a phospho-kinase antibody array revealed that TCTE activates PTK2 (protein tyrosine kinase 2), which phosphorylates ITCH, enhancing the ubiquitination of MLANA. Furthermore, inhibition of either PTK2 or ITCH disrupts the ubiquitination of MLANA and the MLANA-OPTN interaction in TCTE-treated cells. Taken together, our findings highlight the critical role of the PTK2-ITCH-MLANA-OPTN cascade in orchestrating melanophagy progression.<b>Abbreviations</b>: α-MSH: alpha-melanocyte-stimulating hormone; dichlone: 2,3-dichloro-1,4-naphthoquinone; ITCH: itchy E3 ubiquitin protein ligase; MITF: melanocyte inducing transcription factor; MLANA: melan-A; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PINK1: PTEN induced kinase 1; PTK2: protein tyrosine kinase 2; SQSTM1/p62: sequestosome 1; TCTE: 3,4,5-trimethoxycinnamate thymol ester; TPC2: two pore segment channel 2; VDAC1: voltage dependent anion channel 1.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HSP90 N-terminal inhibition promotes mitochondria-derived vesicles related metastasis by reducing TFEB transcription via decreased HSP90AA1-HCFC1 interaction in liver cancer. 在肝癌中,HSP90 N-端抑制通过减少HSP90AA1与HCFC1的相互作用,降低TFEB转录,从而促进线粒体衍生囊泡的相关转移。
Pub Date : 2024-11-11 DOI: 10.1080/15548627.2024.2421703
Lixia Liu, Zhenming Zheng, Yaling Huang, Hairou Su, Guibing Wu, Zihao Deng, Yan Li, Guantai Xie, Jieyou Li, Fei Zou, Xuemei Chen

Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates TFEB transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces TFEB transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the TFEB proximal promoter region. Decreased TFEB transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1-TFEB-LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low TFEB-triggered-MDVs formation caused by HSP90 inhibitors.Abbreviation: ACIs: ATP-competitive inhibitors; BaFA1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CTD: C-terminal domain; EVs: extracellular vesicles; HCFC1: host cell factor C1; HSP90: heat shock protein 90; ILVs: intralumenal vesicles; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: middle domain; MDVs: mitochondria-derived vesicles; MQC: mitochondrial quality control; ΔΨm: mitochondrial membrane potential; MVBs: multivesicular bodies; NB: novobiocin; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFs: transcription factors. NOC: nocodazole; NTD: N-terminal nucleotide binding domain; OCR: oxygen consumption rate; RFP: red fluorescent protein; ROS: reactive oxygen species; STA9090: Ganetespib; VPS35: VPS35 retromer complex component.

当缺乏典型的 MAP1LC3B/LC3B(微管相关蛋白 1 轻链 3 beta)介导的有丝分裂时,癌细胞会通过增加线粒体衍生囊泡(MDVs)来维持线粒体的平衡。MDV 促进线粒体成分向细胞外囊泡 (EV) 的运输,并诱发肿瘤转移。虽然 HSP90(热休克蛋白 90)能合成数百种客户蛋白,其抑制剂也能抑制肿瘤,但与 HSP90 抑制剂相关的化疗却会导致意想不到的转移。在这里,我们发现 HSP90 抑制剂会导致线粒体损伤,但会刺激低 LC3 诱导的 MDVs 和 MDVs 衍生 EVs 的释放。然而,在 HSP90 抑制作用下,LC3 为什么会减少,MDVs 形成的转录调控机制是什么,这些仍然是未知数。由于TFEB(转录因子EB)是最重要的有丝分裂吞噬转录因子,而HSP90的客户HCFC1(宿主细胞因子C1)调控TFEB的转录,因此在MDVs形成过程中,TFEB、HCFC1和HSP90之间应该存在隐性联系。我们的研究结果支持这样一种观点,即 HSP90 N 端抑制通过减少 HSP90AA1 与 HCFC1 的相互作用来减少 TFEB 的转录,从而阻止 HCFC1 与 TFEB 近端启动子区域结合。TFEB 转录的减少以及 LC3 的减少最终促进了 MDVs 的形成。用微管抑制剂nocodazole(NOC)阻断MDVs的形成可激活HCFC1-TFEB-LC3轴,削弱HSP90抑制剂诱导的MDVs和MDVs衍生EVs的释放,抑制肿瘤细胞球和原发性肝肿瘤的生长,并减少癌细胞向继发性转移部位的外渗。综上所述,这些数据表明,应采用联合疗法来降低 HSP90 抑制剂导致的低 TFEB 触发 MDVs 形成的转移风险。
{"title":"HSP90 N-terminal inhibition promotes mitochondria-derived vesicles related metastasis by reducing TFEB transcription via decreased HSP90AA1-HCFC1 interaction in liver cancer.","authors":"Lixia Liu, Zhenming Zheng, Yaling Huang, Hairou Su, Guibing Wu, Zihao Deng, Yan Li, Guantai Xie, Jieyou Li, Fei Zou, Xuemei Chen","doi":"10.1080/15548627.2024.2421703","DOIUrl":"10.1080/15548627.2024.2421703","url":null,"abstract":"<p><p>Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis. Herein, we find that HSP90 inhibitor causes mitochondrial damage but stimulates the low LC3-induced MDVs and the release of MDVs-derived EVs. However, why LC3 decreases and what is the transcriptional regulatory mechanism of MDVs formation under HSP90 inhibition remain unknown. Because TFEB (transcription factor EB) is the most important mitophagy transcription factor, and the HSP90 client HCFC1 (host cell factor C1) regulates <i>TFEB</i> transcription, there should be a hidden connection between TFEB, HCFC1 and HSP90 in MDVs formation. Our results support the idea that HSP90 N-terminal inhibition reduces <i>TFEB</i> transcription via decreased HSP90AA1-HCFC1 interaction, which prevents HCFC1 from binding to the <i>TFEB</i> proximal promoter region. Decreased <i>TFEB</i> transcription and consequently reduced LC3, ultimately promoted MDVs formation. Blocking MDVs formation with the microtubule inhibitor nocodazole (NOC) activates the HCFC1-<i>TFEB</i>-LC3 axis, weakens HSP90 inhibitors-induced MDVs and the release of MDVs-derived EVs, inhibits the growth of tumor cell spheres and primary liver tumors, and reduces the extravasation of cancer cells to secondary metastatic sites. Taken together, these data suggest that combination therapy should be used to reduce the metastatic risk of low <i>TFEB</i>-triggered-MDVs formation caused by HSP90 inhibitors.<b>Abbreviation</b>: ACIs: ATP-competitive inhibitors; BaFA1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CTD: C-terminal domain; EVs: extracellular vesicles; HCFC1: host cell factor C1; HSP90: heat shock protein 90; ILVs: intralumenal vesicles; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MD: middle domain; MDVs: mitochondria-derived vesicles; MQC: mitochondrial quality control; ΔΨm: mitochondrial membrane potential; MVBs: multivesicular bodies; NB: novobiocin; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFs: transcription factors. NOC: nocodazole; NTD: N-terminal nucleotide binding domain; OCR: oxygen consumption rate; RFP: red fluorescent protein; ROS: reactive oxygen species; STA9090: Ganetespib; VPS35: VPS35 retromer complex component.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). 有丝分裂过程中PHB2(禁止素2)的有效暴露取决于VDAC1(电压依赖性阴离子通道1)。
Pub Date : 2024-11-08 DOI: 10.1080/15548627.2024.2426116
Moumita Roy, Sumangal Nandy, Elena Marchesan, Chayan Banerjee, Rupsha Mondal, Federico Caicci, Elena Ziviani, Joy Chakraborty

Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through in vitro biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance in vivo, we utilized porin (equivalent to VDAC1) knockout Drosophila line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.

在自噬清除去极化线粒体(有丝分裂)过程中,线粒体内膜驻留蛋白 PHB2(禁止素 2)的暴露取决于泛素-蛋白酶体系统。这种揭示促进了 PHB2 与吞噬体膜相关蛋白 MAP1LC3/LC3 的相互作用。目前还不清楚 PHB2 是否随机暴露在线粒体破裂部位。先前的知识和初步筛选表明,VDAC1(电压依赖性阴离子通道 1)可能在这一现象中发挥作用。通过体外生化试验和成像,我们发现线粒体去极化过程中 VDAC1-PHB2 的相互作用会增加。随后,这种相互作用提高了 PHB2 暴露和有丝分裂的效率。为了研究其在体内的相关性,我们利用了porin(相当于VDAC1)基因敲除果蝇品系。我们的研究结果表明,在线粒体应激过程中,porin 对 PHb2 暴露、Phb2-Atg8 相互作用和有丝分裂至关重要。这项研究突出表明,在有丝分裂过程中,VDAC1主要通过线粒体断裂位点使PHB2有效地同步暴露。这些发现可为理解进行性神经退行性变提供启示。
{"title":"Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1).","authors":"Moumita Roy, Sumangal Nandy, Elena Marchesan, Chayan Banerjee, Rupsha Mondal, Federico Caicci, Elena Ziviani, Joy Chakraborty","doi":"10.1080/15548627.2024.2426116","DOIUrl":"https://doi.org/10.1080/15548627.2024.2426116","url":null,"abstract":"<p><p>Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through <i>in vitro</i> biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance <i>in vivo</i>, we utilized <i>porin</i> (equivalent to VDAC1) knockout <i>Drosophila</i> line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation. 禽类TRIM13通过靶向MAVS进行自噬降解来削弱抗病毒先天免疫力。
Pub Date : 2024-11-07 DOI: 10.1080/15548627.2024.2426114
Peng Zhou, Qingxiang Zhang, Yueshan Yang, Dong Chen, Anan Jongkaewwattana, Hui Jin, Hongbo Zhou, Rui Luo

MAVS (mitochondrial antiviral signaling protein) is a crucial adaptor in antiviral innate immunity that must be tightly regulated to maintain immune homeostasis. In this study, we identified the duck Anas platyrhynchos domesticus TRIM13 (ApdTRIM13) as a novel negative regulator of duck MAVS (ApdMAVS) that mediates the antiviral innate immune response. Upon infection with RNA viruses, ApdTRIM13 expression increased, and it specifically binds to ApdMAVS through its TM domain, facilitating the degradation of ApdMAVS in a manner independent of E3 ligase activity. Furthermore, ApdTRIM13 recruits the autophagic cargo receptor duck SQSTM1 (ApdSQSTM1), which facilitates its interaction with ApdMAVS independent of ubiquitin signaling, and subsequently delivers ApdMAVS to phagophores for degradation. Depletion of ApdSQSTM1 reduces ApdTRIM13-mediated autophagic degradation of ApdMAVS, thereby enhancing the antiviral immune response. Collectively, our findings reveal a novel mechanism by which ApdTRIM13 regulates type I interferon production by targeting ApdMAVS for selective autophagic degradation mediated by ApdSQSTM1, providing insights into the crosstalk between selective autophagy and innate immune responses in avian species.

MAVS(线粒体抗病毒信号蛋白)是抗病毒先天免疫中的一个关键适配因子,必须对其进行严格调控才能维持免疫平衡。在这项研究中,我们发现鸭TRIM13(ApdTRIM13)是鸭MAVS(ApdMAVS)的一种新型负调控因子,可介导抗病毒先天性免疫反应。感染 RNA 病毒后,ApdTRIM13 的表达量增加,它通过其 TM 结构域特异性地与 ApdMAVS 结合,以一种独立于 E3 连接酶活性的方式促进 ApdMAVS 的降解。此外,ApdTRIM13还能招募自噬货物受体鸭SQSTM1(ApdSQSTM1),从而促进其与ApdMAVS的相互作用,而不依赖于泛素信号转导,并随后将ApdMAVS送到吞噬细胞中降解。消耗 ApdSQSTM1 会减少 ApdTRIM13 介导的 ApdMAVS 自噬降解,从而增强抗病毒免疫反应。总之,我们的研究结果揭示了一种新的机制,即 ApdTRIM13 通过将 ApdMAVS 靶向于 ApdSQSTM1 介导的选择性自噬降解来调节 I 型干扰素的产生,为了解禽类物种中选择性自噬与先天性免疫应答之间的相互关系提供了深入的见解。
{"title":"Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation.","authors":"Peng Zhou, Qingxiang Zhang, Yueshan Yang, Dong Chen, Anan Jongkaewwattana, Hui Jin, Hongbo Zhou, Rui Luo","doi":"10.1080/15548627.2024.2426114","DOIUrl":"https://doi.org/10.1080/15548627.2024.2426114","url":null,"abstract":"<p><p>MAVS (mitochondrial antiviral signaling protein) is a crucial adaptor in antiviral innate immunity that must be tightly regulated to maintain immune homeostasis. In this study, we identified the duck <i>Anas platyrhynchos domesticus</i> TRIM13 (ApdTRIM13) as a novel negative regulator of duck MAVS (ApdMAVS) that mediates the antiviral innate immune response. Upon infection with RNA viruses, ApdTRIM13 expression increased, and it specifically binds to ApdMAVS through its TM domain, facilitating the degradation of ApdMAVS in a manner independent of E3 ligase activity. Furthermore, ApdTRIM13 recruits the autophagic cargo receptor duck SQSTM1 (ApdSQSTM1), which facilitates its interaction with ApdMAVS independent of ubiquitin signaling, and subsequently delivers ApdMAVS to phagophores for degradation. Depletion of ApdSQSTM1 reduces ApdTRIM13-mediated autophagic degradation of ApdMAVS, thereby enhancing the antiviral immune response. Collectively, our findings reveal a novel mechanism by which ApdTRIM13 regulates type I interferon production by targeting ApdMAVS for selective autophagic degradation mediated by ApdSQSTM1, providing insights into the crosstalk between selective autophagy and innate immune responses in avian species.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atractylenolide I inhibits angiogenesis and reverses sunitinib resistance in clear cell renal cell carcinoma through ATP6V0D2-mediated autophagic degradation of EPAS1/HIF2α. 白术内酯I通过ATP6V0D2介导的EPAS1/HIF2α自噬降解抑制血管生成并逆转透明细胞肾细胞癌的舒尼替尼耐药性。
Pub Date : 2024-11-04 DOI: 10.1080/15548627.2024.2421699
Qinyu Li, Kai Zeng, Qian Chen, Chenglin Han, Xi Wang, Beining Li, Jianping Miao, Bolong Zheng, Jihong Liu, Xianglin Yuan, Bo Liu

Clear cell renal cell carcinoma (ccRCC) is tightly associated with VHL (von Hippel-Lindau tumor suppressor) mutation and dysregulated angiogenesis. Accumulating evidence indicates that antiangiogenic treatment abolishing tumor angiogenesis can achieve longer disease-free survival in patients with ccRCC. Atractylenolide I (ATL-I) is one of the main active compounds in Atractylodes macrocephala root extract and exhibits various pharmacological effects, including anti-inflammatory and antitumor effects. In this study, we revealed the potent antitumor activity of ATL-I in ccRCC. ATL-I exhibited robust antiangiogenic capacity by inhibiting EPAS1/HIF2α-mediated VEGFA production in VHL-deficient ccRCC, and it promoted autophagic degradation of EPAS1 by upregulating the ATPase subunit ATP6V0D2 (ATPase H+ transporting V0 subunit d2) to increase lysosomal function and facilitated fusion between autophagosomes and lysosomes. Mechanistically, ATP6V0D2 directly bound to RAB7 and VPS41 and promoted the RAB7-HOPS interaction, facilitating SNARE complex assembly and autophagosome-lysosome fusion. Moreover, ATP6V0D2 promoted autolysosome degradation by increasing the acidification and activity of lysosomes during the later stages of macroautophagy/autophagy. Additionally, we found that ATL-I could decrease the level of EPAS1, which was upregulated in sunitinib-resistant cells, thus reversing sunitinib resistance. Collectively, our findings demonstrate that ATL-I is a robust antiangiogenic and antitumor lead compound with potential clinical application for ccRCC therapy.Abbreviations: ATL-I: atractylenolide I; ATP6V0D2: ATPase H+ transporting V0 subunit d2; CAM: chick chorioallantoic membrane; ccRCC: clear cell renal cell carcinoma; CTSB: cathepsin B; CTSD: cathepsin D; GO: Gene Ontology; HIF-1: HIF1A-ARNT heterodimer; HOPS: homotypic fusion and protein sorting; KDR/VEGFR: kinase insert domain receptor; KEGG: Kyoto Encyclopedia of Genes and Genomes; RCC: renal cell carcinoma; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; TKI: tyrosine kinase inhibitor; V-ATPase: vacuolar-type H±translocating ATPase; VEGF: vascular endothelial growth factor; VHL: von Hippel-Lindau tumor suppressor.

透明细胞肾细胞癌(ccRCC)与VHL(von Hippel-Lindau肿瘤抑制因子)突变和血管生成失调密切相关。越来越多的证据表明,消除肿瘤血管生成的抗血管生成治疗可以延长ccRCC患者的无病生存期。白术内酯 I(ATL-I)是白术根提取物中的主要活性化合物之一,具有多种药理作用,包括抗炎和抗肿瘤作用。本研究揭示了 ATL-I 在 ccRCC 中的强效抗肿瘤活性。ATL-I通过抑制EPAS1/HIF2α介导的VEGFA生成,在VHL缺陷的ccRCC中表现出强大的抗血管生成能力,并通过上调ATP酶亚基ATP6V0D2(ATP酶H+转运V0亚基d2)促进EPAS1的自噬降解,从而增强溶酶体功能,促进自噬体和溶酶体之间的融合。从机制上讲,ATP6V0D2直接与RAB7和VPS41结合,促进了RAB7-HOPS的相互作用,有利于SNARE复合物的组装和自噬体与溶酶体的融合。此外,在大自噬/自噬的后期阶段,ATP6V0D2通过提高溶酶体的酸化和活性促进自溶酶体降解。此外,我们还发现 ATL-I 能降低舒尼替尼耐药细胞中上调的 EPAS1 水平,从而逆转舒尼替尼耐药。总之,我们的研究结果表明,ATL-I 是一种强效的抗血管生成和抗肿瘤先导化合物,具有临床应用于 ccRCC 治疗的潜力。
{"title":"Atractylenolide I inhibits angiogenesis and reverses sunitinib resistance in clear cell renal cell carcinoma through ATP6V0D2-mediated autophagic degradation of EPAS1/HIF2α.","authors":"Qinyu Li, Kai Zeng, Qian Chen, Chenglin Han, Xi Wang, Beining Li, Jianping Miao, Bolong Zheng, Jihong Liu, Xianglin Yuan, Bo Liu","doi":"10.1080/15548627.2024.2421699","DOIUrl":"10.1080/15548627.2024.2421699","url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) is tightly associated with <i>VHL</i> (von Hippel-Lindau tumor suppressor) mutation and dysregulated angiogenesis. Accumulating evidence indicates that antiangiogenic treatment abolishing tumor angiogenesis can achieve longer disease-free survival in patients with ccRCC. Atractylenolide I (ATL-I) is one of the main active compounds in <i>Atractylodes macrocephala</i> root extract and exhibits various pharmacological effects, including anti-inflammatory and antitumor effects. In this study, we revealed the potent antitumor activity of ATL-I in ccRCC. ATL-I exhibited robust antiangiogenic capacity by inhibiting EPAS1/HIF2α-mediated VEGFA production in VHL-deficient ccRCC, and it promoted autophagic degradation of EPAS1 by upregulating the ATPase subunit ATP6V0D2 (ATPase H+ transporting V0 subunit d2) to increase lysosomal function and facilitated fusion between autophagosomes and lysosomes. Mechanistically, ATP6V0D2 directly bound to RAB7 and VPS41 and promoted the RAB7-HOPS interaction, facilitating SNARE complex assembly and autophagosome-lysosome fusion. Moreover, ATP6V0D2 promoted autolysosome degradation by increasing the acidification and activity of lysosomes during the later stages of macroautophagy/autophagy. Additionally, we found that ATL-I could decrease the level of EPAS1, which was upregulated in sunitinib-resistant cells, thus reversing sunitinib resistance. Collectively, our findings demonstrate that ATL-I is a robust antiangiogenic and antitumor lead compound with potential clinical application for ccRCC therapy.<b>Abbreviations</b>: ATL-I: atractylenolide I; ATP6V0D2: ATPase H+ transporting V0 subunit d2; CAM: chick chorioallantoic membrane; ccRCC: clear cell renal cell carcinoma; CTSB: cathepsin B; CTSD: cathepsin D; GO: Gene Ontology; HIF-1: HIF1A-ARNT heterodimer; HOPS: homotypic fusion and protein sorting; KDR/VEGFR: kinase insert domain receptor; KEGG: Kyoto Encyclopedia of Genes and Genomes; RCC: renal cell carcinoma; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; TKI: tyrosine kinase inhibitor; V-ATPase: vacuolar-type H±translocating ATPase; VEGF: vascular endothelial growth factor; VHL: von Hippel-Lindau tumor suppressor.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mechanisms of ESCRT-mediated autophagosome maturation in plants. escrt介导植物自噬体成熟的分子机制
Pub Date : 2024-11-03 DOI: 10.1080/15548627.2024.2423327
Niccolò Mosesso, Erika Isono

Diverse environmental stress factors affect the functionality of proteins and membrane compartments within cells causing potentially irremediable damage to the cell. A major process to eliminate nonfunctional molecular aggregates or damaged organelles under stress conditions is macroautophagy/autophagy, thus making its regulation critical for cellular adaptation and survival. The formation of autophagosomes is coordinated by a wide range of cellular factors and culminates in the closure of the cup-shaped double membrane or phagophore. The endosomal sorting complex required for transport (ESCRT) machinery has been proposed to mediate the sealing of the autophagic membranes. However, the molecular basis for ESCRT recruitment to phagophores under stress conditions are not yet fully understood. We recently described the role of ALIX (ALG-2 interacting protein-X) and its interactor CALB1 (Ca2+-dependent Lipid Binding protein 1) in autophagosome maturation during salt stress in Arabidopsis. Our study shows that CALB1 is important for phagophore closure and thus to the subsequent delivery to the vacuole. CALB1 localizes on salt-induced phagophores together with ALIX. CALB1 stimulates the phase separation of ALIX, which can facilitate the further ESCRT recruitment to phagophore membranes.

各种环境应激因素会影响细胞内蛋白质和膜区的功能,从而对细胞造成潜在的无法弥补的损害。在应激条件下,消除无功能分子聚集体或受损细胞器的一个主要过程是大自噬/自噬,因此对它的调控对细胞的适应和存活至关重要。自噬体的形成受多种细胞因子的协调,最终导致杯状双层膜或吞噬体的闭合。运输所需的内体分拣复合体(ESCRT)机制被认为是自噬膜封闭的中介。然而,在应激条件下,ESCRT 招募到吞噬体的分子基础尚未完全清楚。我们最近描述了 ALIX(ALG-2 互作蛋白-X)及其互作因子 CALB1(Ca2+ 依赖性脂质结合蛋白 1)在拟南芥盐胁迫期间自噬体成熟过程中的作用。我们的研究表明,CALB1 对于吞噬体的闭合以及随后向液泡的输送非常重要。CALB1 与 ALIX 一起定位于盐诱导的吞噬体上。CALB1 可刺激 ALIX 的相分离,从而促进 ESCRT 进一步招募到吞噬体膜上。
{"title":"Molecular mechanisms of ESCRT-mediated autophagosome maturation in plants.","authors":"Niccolò Mosesso, Erika Isono","doi":"10.1080/15548627.2024.2423327","DOIUrl":"10.1080/15548627.2024.2423327","url":null,"abstract":"<p><p>Diverse environmental stress factors affect the functionality of proteins and membrane compartments within cells causing potentially irremediable damage to the cell. A major process to eliminate nonfunctional molecular aggregates or damaged organelles under stress conditions is macroautophagy/autophagy, thus making its regulation critical for cellular adaptation and survival. The formation of autophagosomes is coordinated by a wide range of cellular factors and culminates in the closure of the cup-shaped double membrane or phagophore. The endosomal sorting complex required for transport (ESCRT) machinery has been proposed to mediate the sealing of the autophagic membranes. However, the molecular basis for ESCRT recruitment to phagophores under stress conditions are not yet fully understood. We recently described the role of ALIX (ALG-2 interacting protein-X) and its interactor CALB1 (Ca<sup>2+</sup>-dependent Lipid Binding protein 1) in autophagosome maturation during salt stress in Arabidopsis. Our study shows that CALB1 is important for phagophore closure and thus to the subsequent delivery to the vacuole. CALB1 localizes on salt-induced phagophores together with ALIX. CALB1 stimulates the phase separation of ALIX, which can facilitate the further ESCRT recruitment to phagophore membranes.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recycling the recyclers: lysophagy emerges as a new pharmacological target for retinal degeneration. 回收者的回收:溶酶体成为治疗视网膜变性的新药理靶点。
Pub Date : 2024-11-01 Epub Date: 2024-08-17 DOI: 10.1080/15548627.2024.2391726
Juan Ignacio Jiménez-Loygorri, Patricia Boya

Dysregulated macroautophagy/autophagy is one of the hallmarks of aging and has also been linked to higher incidence of several age-associated diseases such as age-related macular degeneration (AMD). The main cell type affected in AMD is the retinal pigment epithelium (RPE), and this disease can lead to central vision loss. Despite affecting around 8.7% of the population between 45-85 years, its etiopathogenesis remains unknown. In our recent manuscript using the pharmacological sodium iodate (SI) model of AMD we identified severe lysosomal membrane permeabilization (LMP) in the RPE, that leads to autophagy flux blockage and proteostasis defects. Treatment with the natural compound urolithin A (UA) reduces RPE cell death and alleviates vision loss, concurrent with full autophagy restoration. While UA was initially described as a specific mitophagy inducer, we now show that it is also able to promote SQSTM1/p62-dependent lysophagy in the context of lysosomal damage and LMP. Genetic downregulation of SQSTM1/p62 fully abolishes the effect of UA on lysophagy while mitophagy stimulation remains unaffected. In summary, these findings highlight the wide range of pathways modulated by UA and its potential implementation in the management of AMD and other diseases involving lysosomal damage.

大自噬/自噬失调是衰老的标志之一,也与几种老年相关疾病(如老年性黄斑变性(AMD))的高发病率有关。受老年黄斑变性影响的主要细胞类型是视网膜色素上皮(RPE),这种疾病会导致中心视力丧失。尽管在 45-85 岁的人群中,约有 8.7% 的人患有这种疾病,但其发病机理仍然不明。在我们最近的手稿中,我们使用药理碘酸钠(SI)模型来研究老年性黄斑病变,发现 RPE 中存在严重的溶酶体膜通透性(LMP),这会导致自噬通路受阻和蛋白稳态缺陷。使用天然化合物尿石素 A(UA)治疗可减少 RPE 细胞死亡,缓解视力丧失,同时自噬功能也得到了完全恢复。虽然 UA 最初被描述为一种特异性有丝分裂诱导剂,但我们现在发现它还能在溶酶体损伤和 LMP 的情况下促进 SQSTM1/p62 依赖性溶酶体吞噬。基因下调 SQSTM1/p62 能完全消除 UA 对溶酶吞噬的影响,而对有丝分裂的刺激则不受影响。总之,这些发现凸显了尿崩症调节的广泛途径及其在治疗老年性黄斑变性和其他涉及溶酶体损伤的疾病中的应用潜力。
{"title":"Recycling the recyclers: lysophagy emerges as a new pharmacological target for retinal degeneration.","authors":"Juan Ignacio Jiménez-Loygorri, Patricia Boya","doi":"10.1080/15548627.2024.2391726","DOIUrl":"10.1080/15548627.2024.2391726","url":null,"abstract":"<p><p>Dysregulated macroautophagy/autophagy is one of the hallmarks of aging and has also been linked to higher incidence of several age-associated diseases such as age-related macular degeneration (AMD). The main cell type affected in AMD is the retinal pigment epithelium (RPE), and this disease can lead to central vision loss. Despite affecting around 8.7% of the population between 45-85 years, its etiopathogenesis remains unknown. In our recent manuscript using the pharmacological sodium iodate (SI) model of AMD we identified severe lysosomal membrane permeabilization (LMP) in the RPE, that leads to autophagy flux blockage and proteostasis defects. Treatment with the natural compound urolithin A (UA) reduces RPE cell death and alleviates vision loss, concurrent with full autophagy restoration. While UA was initially described as a specific mitophagy inducer, we now show that it is also able to promote SQSTM1/p62-dependent lysophagy in the context of lysosomal damage and LMP. Genetic downregulation of SQSTM1/p62 fully abolishes the effect of UA on lysophagy while mitophagy stimulation remains unaffected. In summary, these findings highlight the wide range of pathways modulated by UA and its potential implementation in the management of AMD and other diseases involving lysosomal damage.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes. 胰腺β细胞自噬失调与2型糖尿病的风险
Pub Date : 2024-11-01 Epub Date: 2024-06-18 DOI: 10.1080/15548627.2024.2367356
Hayder M Al-Kuraishy, Majid S Jabir, Ali I Al-Gareeb, Daniel J Klionsky, Ali K Albuhadily

Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.

自噬是一种重要的降解过程,可清除异常细胞成分,维持细胞内的平衡,并在饥饿时提供营养。激活自噬可提高细胞在压力条件下的存活率,但过度激活自噬会诱导自噬细胞死亡。因此,早期发生的自噬可促进细胞存活,而晚期发生的自噬会导致细胞程序性死亡,从而阻止不同疾病的进展。此外,自噬通过不同的机制调节胰腺β细胞的功能,但自噬在2型糖尿病(T2D)中的确切作用尚不完全清楚。因此,这篇微型综述讨论了自噬在胰腺β细胞和T2D病理生理学中的保护和有害作用。
{"title":"Dysregulation of pancreatic β-cell autophagy and the risk of type 2 diabetes.","authors":"Hayder M Al-Kuraishy, Majid S Jabir, Ali I Al-Gareeb, Daniel J Klionsky, Ali K Albuhadily","doi":"10.1080/15548627.2024.2367356","DOIUrl":"10.1080/15548627.2024.2367356","url":null,"abstract":"<p><p>Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic β-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic β cell and in the pathophysiology of T2D.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1