首页 > 最新文献

Autophagy最新文献

英文 中文
Muscle meets Lysosomes: emerging strategies in muscular dystrophy. 肌肉与溶酶体:肌肉萎缩症的新策略。
IF 14.3 Pub Date : 2026-01-14 DOI: 10.1080/15548627.2026.2615985
Abbass Jaber, David Israeli

Duchenne muscular dystrophy (DMD) is caused by the loss of DMD (dystrophin), leading to sarcolemmal fragility and progressive muscle degeneration. Although adeno-associated viral (AAV) microdystrophin (µDMD) therapies have advanced clinically, their benefits remain partial, highlighting the need to identify secondary cellular defects that limit therapeutic efficacy. In our recent study, we demonstrated that lysosomal dysfunction is a conserved, intrinsic, and persistent feature of DMD pathology. Using mouse, canine, and human dystrophic muscle, we show marked lysosomal membrane permeabilization (LMP), impaired acidification, defective proteolysis, and inefficient membrane repair, all hallmarks of compromised lysosomal integrity. Cholesterol accumulation within dystrophic myofibers further exacerbates these defects, linking lipid dysregulation to lysosomal injury and accelerated muscle degeneration. We find macroautophagy/autophagy impairment in DMD stems in part from reduced autophagosome-lysosome fusion, reframing autophagy failure as a downstream consequence of lysosomal damage. µDMD gene therapy only partially corrects these abnormalities and does not fully restore lysosomal stability. In contrast, combining µDMD with the lysosome-activating disaccharide trehalose produces synergistic benefits, improving muscle strength, architecture, and molecular signatures beyond either treatment alone. These findings position lysosomal dysfunction as a central driver of DMD pathophysiology and support therapeutic strategies that pair gene restoration with lysosomal enhancement.Abbreviation: AAV: adeno-associated virus; DAGC: DMD-associated glycoprotein complex; DMD: Duchenne muscular dystrophy; FDA: Food and Drug Administration; LMP: lysosome membrane permeabilization; MTOR: mechanistic target of rapamycin kinase; µDMD: microdystrophin.

杜氏肌营养不良症(DMD)是由DMD(肌营养不良蛋白)的丧失引起的,导致肌上皮脆性和进行性肌肉变性。尽管腺相关病毒(AAV)微营养不良蛋白(µDMD)疗法在临床上取得了进展,但其益处仍然是局部的,这突出表明需要识别限制治疗效果的继发性细胞缺陷。在我们最近的研究中,我们证明了溶酶体功能障碍是DMD病理的一个保守的、内在的和持久的特征。在小鼠、犬和人的营养不良肌肉中,我们发现溶酶体膜渗透(LMP)明显,酸化受损,蛋白水解缺陷,膜修复效率低下,这些都是溶酶体完整性受损的标志。营养不良肌纤维内的胆固醇积累进一步加剧了这些缺陷,将脂质失调与溶酶体损伤和加速肌肉变性联系起来。我们发现DMD的巨噬/自噬损伤部分源于自噬体-溶酶体融合减少,将自噬失败重新定义为溶酶体损伤的下游后果。µDMD基因治疗只能部分纠正这些异常,不能完全恢复溶酶体的稳定性。相比之下,将µDMD与溶酶体活化双糖海藻糖结合可以产生协同效应,改善肌肉力量,结构和分子特征,而不是单独治疗。这些发现将溶酶体功能障碍定位为DMD病理生理的核心驱动因素,并支持将基因修复与溶酶体增强配对的治疗策略。缩写:AAV:腺相关病毒;DAGC: dmd相关糖蛋白复合物;DMD:杜氏肌营养不良;FDA:食品和药物管理局;LMP:溶酶体膜渗透;MTOR:雷帕霉素激酶的机制靶点µDMD: microdystrophin。
{"title":"Muscle meets Lysosomes: emerging strategies in muscular dystrophy.","authors":"Abbass Jaber, David Israeli","doi":"10.1080/15548627.2026.2615985","DOIUrl":"https://doi.org/10.1080/15548627.2026.2615985","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is caused by the loss of DMD (dystrophin), leading to sarcolemmal fragility and progressive muscle degeneration. Although adeno-associated viral (AAV) microdystrophin (<i>µDMD</i>) therapies have advanced clinically, their benefits remain partial, highlighting the need to identify secondary cellular defects that limit therapeutic efficacy. In our recent study, we demonstrated that lysosomal dysfunction is a conserved, intrinsic, and persistent feature of DMD pathology. Using mouse, canine, and human dystrophic muscle, we show marked lysosomal membrane permeabilization (LMP), impaired acidification, defective proteolysis, and inefficient membrane repair, all hallmarks of compromised lysosomal integrity. Cholesterol accumulation within dystrophic myofibers further exacerbates these defects, linking lipid dysregulation to lysosomal injury and accelerated muscle degeneration. We find macroautophagy/autophagy impairment in DMD stems in part from reduced autophagosome-lysosome fusion, reframing autophagy failure as a downstream consequence of lysosomal damage. <i>µDMD</i> gene therapy only partially corrects these abnormalities and does not fully restore lysosomal stability. In contrast, combining <i>µDMD</i> with the lysosome-activating disaccharide trehalose produces synergistic benefits, improving muscle strength, architecture, and molecular signatures beyond either treatment alone. These findings position lysosomal dysfunction as a central driver of DMD pathophysiology and support therapeutic strategies that pair gene restoration with lysosomal enhancement.<b>Abbreviation</b>: AAV: adeno-associated virus; DAGC: DMD-associated glycoprotein complex; DMD: Duchenne muscular dystrophy; FDA: Food and Drug Administration; LMP: lysosome membrane permeabilization; MTOR: mechanistic target of rapamycin kinase; µDMD: microdystrophin.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-3"},"PeriodicalIF":14.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145967124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteotoxic stress triggers TFEB- and TFE3-mediated autophagy and lysosomal biogenesis via non-canonical MTORC1 inactivation. 蛋白毒性应激通过非规范MTORC1失活触发TFEB-和tfe3介导的自噬和溶酶体生物发生。
IF 14.3 Pub Date : 2026-01-14 DOI: 10.1080/15548627.2025.2608973
Zhou Zhu, Jing Yang, Sandro Montefusco, Siyu Xia, Jinhuan Ou, Haibo Tong, Qingzhong Zeng, Fengmei Xu, Lingyun Dai, Jichao Sun, Chengchao Xu, Diego Luis Medina, Jigang Wang, Wei Zhang, Chuanbin Yang

Proteotoxic stress, arising from conditions that cause misfolded protein accumulation, is closely linked to the pathogenesis of multiple diseases. Macroautophagy/autophagy activation is considered a compensatory mechanism to maintain protein homeostasis, but the underlying regulatory mechanisms remain incompletely understood. Here, we show that proteotoxic stress induced by proteasome inhibition, puromycin treatment, or polyglutamine-expanded HTT (huntingtin) expression promotes nuclear accumulation of TFEB and TFE3, key regulators of lysosomal biogenesis and autophagy. Mechanistically, TFEB activation under proteotoxic stress occurs independently of canonical MTORC1 inactivation mediated by TSC2 or ATF4. Instead, it involves non-canonical inhibition of MTORC1 via RRAG GTPases. Proteotoxic stress disrupts the RRAGC-TFEB interaction, preventing TFEB recruitment to lysosomes and subsequent MTORC1 phosphorylation. An activated RRAGC mutant rescues impaired lysosomal localization and nuclear accumulation of TFEB, while co-overexpression of FLCN and FNIP2, a GAP for RRAGC, partially restores stress-induced TFEB dephosphorylation. In addition, proteasome inhibition activates non-canonical autophagy. Deletion of ATG16L1 or ATG5, which known blocks Atg8-family protein lipidation and sequesters the FLCN-FNIP2 complex, partially abolishes proteotoxic stress-induced TFEB dephosphorylation and nuclear accumulation. Together, these findings demonstrate that proteotoxic stress triggers both non-canonical autophagy and TFEB-mediated canonical autophagy, with Atg8-family protein lipidation contributing to TFEB activation. Our results provide novel insights into how proteotoxic stress engages non-canonical MTORC1 inhibition and TFEB activation, thereby enhancing understanding of cellular adaptation to proteotoxic stress.Abbreviations: ALP, autophagy-lysosomal pathway; ATF4, activating transcription factor 4; Baf A1, bafilomycin A1; CHX, cycloheximide; BTZ, bortezomib; CFZ, carfilzomib; CQ, chloroquine; CTSB, cathepsin B; CTSD, cathepsin D; DQ-BSA, dequenched-bovine serum albumin; EIF4EBP1/4EBP1, eukaryotic translation initiation factor 4E binding protein 1; ER, endoplasmic reticulum; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MG132, carbobenzoxy-Leu-Leu-leucinal; MTORC1, mechanistic target of rapamycin kinase complex 1; RPS6KB1/p70, ribosomal protein S6 kinase B1; RRAG, Ras related GTP binding; SQSTM1/p62, sequestosome 1; TFE3, transcription factor E3; TFEB, transcription factor EB; TSC2, TSC complex subunit 2; tfLC3, tandem fluorescent LC3; UPS, ubiquitin-proteasome system.

蛋白质毒性应激是由导致错误折叠蛋白质积累的条件引起的,与多种疾病的发病机制密切相关。巨噬/自噬激活被认为是维持蛋白质稳态的一种代偿机制,但其潜在的调节机制尚不完全清楚。本研究表明,由蛋白酶体抑制、嘌呤霉素治疗或聚谷氨酰胺扩增HTT(亨廷顿蛋白)表达诱导的蛋白毒性应激可促进核内TFEB和TFE3的积累,而TFEB和TFE3是溶酶体生物发生和自噬的关键调节因子。在机制上,TFEB在蛋白毒性应激下的激活独立于由TSC2或ATF4介导的典型MTORC1失活。相反,它涉及通过RRAG GTPases对MTORC1的非典型抑制。蛋白毒性应激破坏RRAGC-TFEB相互作用,阻止TFEB向溶酶体募集和随后的MTORC1磷酸化。激活的RRAGC突变体可以修复受损的溶酶体定位和TFEB的核积累,而FLCN和FNIP2 (RRAGC的GAP)的共同过表达可以部分恢复应激诱导的TFEB去磷酸化。此外,蛋白酶体抑制激活非典型自噬。ATG16L1或ATG5的缺失阻断了atg8家族蛋白脂化并隔离了FLCN-FNIP2复合物,部分消除了蛋白毒性应激诱导的TFEB去磷酸化和核积累。总之,这些发现表明,蛋白质毒性应激触发非典型自噬和TFEB介导的典型自噬,atg8家族蛋白脂化促进TFEB激活。我们的研究结果为蛋白质毒性应激如何参与非规范MTORC1抑制和TFEB激活提供了新的见解,从而增强了对细胞适应蛋白质毒性应激的理解。
{"title":"Proteotoxic stress triggers TFEB- and TFE3-mediated autophagy and lysosomal biogenesis via non-canonical MTORC1 inactivation.","authors":"Zhou Zhu, Jing Yang, Sandro Montefusco, Siyu Xia, Jinhuan Ou, Haibo Tong, Qingzhong Zeng, Fengmei Xu, Lingyun Dai, Jichao Sun, Chengchao Xu, Diego Luis Medina, Jigang Wang, Wei Zhang, Chuanbin Yang","doi":"10.1080/15548627.2025.2608973","DOIUrl":"10.1080/15548627.2025.2608973","url":null,"abstract":"<p><p>Proteotoxic stress, arising from conditions that cause misfolded protein accumulation, is closely linked to the pathogenesis of multiple diseases. Macroautophagy/autophagy activation is considered a compensatory mechanism to maintain protein homeostasis, but the underlying regulatory mechanisms remain incompletely understood. Here, we show that proteotoxic stress induced by proteasome inhibition, puromycin treatment, or polyglutamine-expanded HTT (huntingtin) expression promotes nuclear accumulation of TFEB and TFE3, key regulators of lysosomal biogenesis and autophagy. Mechanistically, TFEB activation under proteotoxic stress occurs independently of canonical MTORC1 inactivation mediated by TSC2 or ATF4. Instead, it involves non-canonical inhibition of MTORC1 via RRAG GTPases. Proteotoxic stress disrupts the RRAGC-TFEB interaction, preventing TFEB recruitment to lysosomes and subsequent MTORC1 phosphorylation. An activated RRAGC mutant rescues impaired lysosomal localization and nuclear accumulation of TFEB, while co-overexpression of FLCN and FNIP2, a GAP for RRAGC, partially restores stress-induced TFEB dephosphorylation. In addition, proteasome inhibition activates non-canonical autophagy. Deletion of <i>ATG16L1</i> or <i>ATG5</i>, which known blocks Atg8-family protein lipidation and sequesters the FLCN-FNIP2 complex, partially abolishes proteotoxic stress-induced TFEB dephosphorylation and nuclear accumulation. Together, these findings demonstrate that proteotoxic stress triggers both non-canonical autophagy and TFEB-mediated canonical autophagy, with Atg8-family protein lipidation contributing to TFEB activation. Our results provide novel insights into how proteotoxic stress engages non-canonical MTORC1 inhibition and TFEB activation, thereby enhancing understanding of cellular adaptation to proteotoxic stress.<b>Abbreviations</b>: ALP, autophagy-lysosomal pathway; ATF4, activating transcription factor 4; Baf A1, bafilomycin A<sub>1</sub>; CHX, cycloheximide; BTZ, bortezomib; CFZ, carfilzomib; CQ, chloroquine; CTSB, cathepsin B; CTSD, cathepsin D; DQ-BSA, dequenched-bovine serum albumin; EIF4EBP1/4EBP1, eukaryotic translation initiation factor 4E binding protein 1; ER, endoplasmic reticulum; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MG132, carbobenzoxy-Leu-Leu-leucinal; MTORC1, mechanistic target of rapamycin kinase complex 1; RPS6KB1/p70, ribosomal protein S6 kinase B1; RRAG, Ras related GTP binding; SQSTM1/p62, sequestosome 1; TFE3, transcription factor E3; TFEB, transcription factor EB; TSC2, TSC complex subunit 2; tfLC3, tandem fluorescent LC3; UPS, ubiquitin-proteasome system.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-18"},"PeriodicalIF":14.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145835447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolites released from apoptotic cells in central nervous system orchestrates the pathological process of Alzheimer disease through improving autophagy. 中枢神经系统凋亡细胞释放的代谢物通过促进自噬调控阿尔茨海默病的病理过程。
IF 14.3 Pub Date : 2026-01-10 DOI: 10.1080/15548627.2026.2615978
Fan Xiao, Xue Tan, Aojie He, Yulan Zhou, Kaicheng Xu, Ziqi Yuan, Yufei Zhu, Chensi Liang, Dan Can, Jie Zhang, Lige Leng

Apoptosis, a programmed cell death process activated in Alzheimer disease (AD), is not limited to neurons but extends to all cell types within the central nervous system (CNS). However, how apoptotic cells mediate their impact on surrounding cells and contribute to the pathological progression of AD remains largely unclear. Here, we report that in 5×FAD mice, cells surrounding amyloid-β (Aβ) plaques undergo apoptosis, which occurs concurrently with elevated macroautophagy/autophagy. The autophagic flux, nevertheless, is impaired in AD, as evidenced by the simultaneous accumulation of MAP1LC3/LC3 and SQSTM1/p62. As a result, although there is an increased formation of autophagosomes, misfolded proteins fail to undergo proper degradation in the subsequent process. By profiling the "metabolomic secretome" of primary neurons and glial cells under different apoptotic stimuli, we identified spermidine as a conserved apoptotic metabolite messenger in the CNS. Spermidine is actively released from apoptotic neurons or glia cells and functions in a paracrine manner to induce autophagy activation in neighboring cells. Such an effect of enhancing autophagic flux promotes both the cargo encapsulation within autophagosomes and degradation in autolysosomes in nearby cells. Conversely, the blockade of spermidine release impairs autophagic flux, thereby exacerbating cognitive impairment and pathological progression in AD. These findings reveal a link between cell apoptosis and autophagy in AD, suggesting that spermidine supplementation could serve as a promising therapeutic strategy.

凋亡是一种在阿尔茨海默病(AD)中激活的程序性细胞死亡过程,它不仅局限于神经元,而且扩展到中枢神经系统(CNS)内的所有细胞类型。然而,凋亡细胞如何介导其对周围细胞的影响并促进AD的病理进展仍不清楚。在这里,我们报道5×FAD小鼠中,淀粉样蛋白-β (Aβ)斑块周围的细胞发生凋亡,这与巨噬/自噬升高同时发生。然而,自噬通量在AD中受损,MAP1LC3/LC3和SQSTM1/p62同时积累证明了这一点。因此,尽管自噬体的形成增加,但错误折叠的蛋白质在随后的过程中无法进行适当的降解。通过分析不同凋亡刺激下原代神经元和胶质细胞的“代谢组分泌组”,我们确定亚精胺是中枢神经系统中保守的凋亡代谢物信使。亚精胺从凋亡的神经元或胶质细胞中主动释放,并以旁分泌的方式诱导邻近细胞的自噬激活。这种增强自噬通量的作用既促进了自噬小体内的货物包封,也促进了附近细胞内自噬小体的降解。相反,阻断亚精胺释放会损害自噬通量,从而加剧AD的认知障碍和病理进展。这些发现揭示了AD中细胞凋亡和自噬之间的联系,表明补充亚精胺可能是一种有希望的治疗策略。
{"title":"Metabolites released from apoptotic cells in central nervous system orchestrates the pathological process of Alzheimer disease through improving autophagy.","authors":"Fan Xiao, Xue Tan, Aojie He, Yulan Zhou, Kaicheng Xu, Ziqi Yuan, Yufei Zhu, Chensi Liang, Dan Can, Jie Zhang, Lige Leng","doi":"10.1080/15548627.2026.2615978","DOIUrl":"https://doi.org/10.1080/15548627.2026.2615978","url":null,"abstract":"<p><p>Apoptosis, a programmed cell death process activated in Alzheimer disease (AD), is not limited to neurons but extends to all cell types within the central nervous system (CNS). However, how apoptotic cells mediate their impact on surrounding cells and contribute to the pathological progression of AD remains largely unclear. Here, we report that in 5×FAD mice, cells surrounding amyloid-β (Aβ) plaques undergo apoptosis, which occurs concurrently with elevated macroautophagy/autophagy. The autophagic flux, nevertheless, is impaired in AD, as evidenced by the simultaneous accumulation of MAP1LC3/LC3 and SQSTM1/p62. As a result, although there is an increased formation of autophagosomes, misfolded proteins fail to undergo proper degradation in the subsequent process. By profiling the \"metabolomic secretome\" of primary neurons and glial cells under different apoptotic stimuli, we identified spermidine as a conserved apoptotic metabolite messenger in the CNS. Spermidine is actively released from apoptotic neurons or glia cells and functions in a paracrine manner to induce autophagy activation in neighboring cells. Such an effect of enhancing autophagic flux promotes both the cargo encapsulation within autophagosomes and degradation in autolysosomes in nearby cells. Conversely, the blockade of spermidine release impairs autophagic flux, thereby exacerbating cognitive impairment and pathological progression in AD. These findings reveal a link between cell apoptosis and autophagy in AD, suggesting that spermidine supplementation could serve as a promising therapeutic strategy.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145949482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NK cell-derived GZMB (granzyme B) suppresses glioblastoma radioresistance by blocking SDC1-mediated autophagosome maturation. NK细胞来源的GZMB(颗粒酶B)通过阻断sdc1介导的自噬体成熟来抑制胶质母细胞瘤的放射耐药。
IF 14.3 Pub Date : 2026-01-09 DOI: 10.1080/15548627.2025.2601856
Jingze Yan, Ruishen Feng, Qin Qin, Gefenqiang Shen, Meng Tian, Sunkai Ling, Shu Zhou, Fei Li, Xiaojie Xia, Yuandong Cao, Liang Zeng, Chunlin Shao, Xinchen Sun, Wang Zheng

Radiotherapy is a fundamental step in the combined treatment of glioblastoma (GBM), while radioresistance of GBM causes limitation of therapeutic efficacy. Natural killer (NK) cells, a potential target of immunotherapy, have attracted considerable attention due to the robust cancer cell-targeted cytotoxicity in combined treatment with radiotherapy, suggesting NK cell regulation might be a radiosensitization strategy. Here we show that a cytotoxic subset of NK cells could be stimulated by ionizing radiation (IR) and accumulate in the GBM tumor microenvironment (TME). Co-culturing with NK cells significantly enhances the GBM cell response to IR, and pharmaceutically depleting NK cells in mice elevates IR-induced tumor growth delay. Specifically, GZMB should be the radiosensitization effector secreted by NK cells. Suppressing GZMB activity remarkably impairs NK-mediated GBM radiosensitization. Meanwhile, administrating exogenous GZMB improves irradiation dose-survival response in vitro or in a xenograft model. Mechanically, GZMB blocks autophagosome-lysosome fusion in GBM cells by directly recognizing and cleaving SDC1, a key regulator of autophagosome maturation, at the valine 225 and aspartate 228 sites. Uncleavable mutation of SDC1 reverses GZMB-mediated radiosensitization in GBM. Further studies demonstrate that cleavage of SDC1 obstructs the localization of TGM2, a key MAP1LC3/LC3 recognizer, on the lysosome surface. Clinical data reveal GBM patients with an SDC1 valine 225 or aspartate 228 mutation display lower response to radiotherapy. In this study, we disclose the critical role of NK cells in tumor radiotherapy through secreting GZMB and impeding autophagosome maturation, as well as propose a potential strategy combining radiotherapy and NK-based immunotherapy against radioresistant GBM.Abbreviations: DEGs: differentially expressed genes; GBM: glioblastoma; GZMB: granzyme B; IL: interleukin; IR: ionizing radiation; IRS: immunoreactive score; LAMP: lysosomal associated membrane protein; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; mSDC1: mutant SDC1; NK: natural killer; PRF1: perforin 1; SDC1: syndecan 1; SNAP29: synaptosome associated protein 29; SQSTM1: sequestosome 1; STX17: syntaxin 17; TGM2: transglutaminase 2; TME: tumor microenvironment; TGD: tumor growth delay; VAMP8: vesicle associated membrane protein 8; WT: wild type.

放射治疗是胶质母细胞瘤(GBM)联合治疗的基础步骤,而GBM的放射耐药导致了治疗效果的限制。自然杀伤(NK)细胞作为一种潜在的免疫治疗靶点,由于其在联合放疗中具有强大的癌细胞靶向细胞毒性而引起了人们的广泛关注,这表明NK细胞调节可能是一种放射增敏策略。在这里,我们表明NK细胞的细胞毒性亚群可以被电离辐射(IR)刺激并在GBM肿瘤微环境(TME)中积累。与NK细胞共培养可显著增强GBM细胞对IR的反应,并且在小鼠中药物消耗NK细胞可提高IR诱导的肿瘤生长延迟。具体来说,GZMB应该是NK细胞分泌的放射致敏效应物。抑制GZMB活性显著损害nk介导的GBM放射致敏。同时,在体外或异种移植模型中,外源性GZMB可改善辐照剂量-生存反应。机械上,GZMB通过直接识别和切割自噬体成熟的关键调节因子SDC1,在缬氨酸225和天门氨酸228位点阻断GBM细胞中自噬体与溶酶体的融合。不可切割的SDC1突变逆转gzmb介导的GBM放射致敏。进一步的研究表明,SDC1的裂解阻碍了TGM2在溶酶体表面的定位,TGM2是MAP1LC3/LC3的关键识别因子。临床数据显示,SDC1缬氨酸225或天冬氨酸228突变的GBM患者对放疗的反应较低。在本研究中,我们揭示了NK细胞通过分泌GZMB和阻碍自噬体成熟在肿瘤放疗中的关键作用,并提出了放疗和NK免疫治疗联合治疗放射耐药GBM的潜在策略。DEGs:差异表达基因;“绿带运动”:胶质母细胞瘤;GZMB:颗粒酶B;IL:白介素;IR:电离辐射;IRS:免疫反应评分;LAMP:溶酶体相关膜蛋白;MAP1LC3/LC3:微管相关蛋白1轻链3;mSDC1:突变体SDC1;NK:天然杀手;PRF1: perforin 1;SDC1: syndecan 1;SNAP29:突触体相关蛋白29;SQSTM1: sequestosome 1;STX17: syntaxin 17;TGM2:谷氨酰胺转酶2;TME:肿瘤微环境;TGD:肿瘤生长延迟;VAMP8:囊泡相关膜蛋白8;WT:野生型。
{"title":"NK cell-derived GZMB (granzyme B) suppresses glioblastoma radioresistance by blocking SDC1-mediated autophagosome maturation.","authors":"Jingze Yan, Ruishen Feng, Qin Qin, Gefenqiang Shen, Meng Tian, Sunkai Ling, Shu Zhou, Fei Li, Xiaojie Xia, Yuandong Cao, Liang Zeng, Chunlin Shao, Xinchen Sun, Wang Zheng","doi":"10.1080/15548627.2025.2601856","DOIUrl":"10.1080/15548627.2025.2601856","url":null,"abstract":"<p><p>Radiotherapy is a fundamental step in the combined treatment of glioblastoma (GBM), while radioresistance of GBM causes limitation of therapeutic efficacy. Natural killer (NK) cells, a potential target of immunotherapy, have attracted considerable attention due to the robust cancer cell-targeted cytotoxicity in combined treatment with radiotherapy, suggesting NK cell regulation might be a radiosensitization strategy. Here we show that a cytotoxic subset of NK cells could be stimulated by ionizing radiation (IR) and accumulate in the GBM tumor microenvironment (TME). Co-culturing with NK cells significantly enhances the GBM cell response to IR, and pharmaceutically depleting NK cells in mice elevates IR-induced tumor growth delay. Specifically, GZMB should be the radiosensitization effector secreted by NK cells. Suppressing GZMB activity remarkably impairs NK-mediated GBM radiosensitization. Meanwhile, administrating exogenous GZMB improves irradiation dose-survival response in <i>vitro</i> or in a xenograft model. Mechanically, GZMB blocks autophagosome-lysosome fusion in GBM cells by directly recognizing and cleaving SDC1, a key regulator of autophagosome maturation, at the valine 225 and aspartate 228 sites. Uncleavable mutation of SDC1 reverses GZMB-mediated radiosensitization in GBM. Further studies demonstrate that cleavage of SDC1 obstructs the localization of TGM2, a key MAP1LC3/LC3 recognizer, on the lysosome surface. Clinical data reveal GBM patients with an SDC1 valine 225 or aspartate 228 mutation display lower response to radiotherapy. In this study, we disclose the critical role of NK cells in tumor radiotherapy through secreting GZMB and impeding autophagosome maturation, as well as propose a potential strategy combining radiotherapy and NK-based immunotherapy against radioresistant GBM.<b>Abbreviations</b>: DEGs: differentially expressed genes; GBM: glioblastoma; GZMB: granzyme B; IL: interleukin; IR: ionizing radiation; IRS: immunoreactive score; LAMP: lysosomal associated membrane protein; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; mSDC1: mutant SDC1; NK: natural killer; PRF1: perforin 1; SDC1: syndecan 1; SNAP29: synaptosome associated protein 29; SQSTM1: sequestosome 1; STX17: syntaxin 17; TGM2: transglutaminase 2; TME: tumor microenvironment; TGD: tumor growth delay; VAMP8: vesicle associated membrane protein 8; WT: wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-22"},"PeriodicalIF":14.3,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145727750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic enteritis triggered by diet westernization is driven by epithelial ATG16L1-mediated autophagy. 饮食西化引发的慢性肠炎是由上皮细胞atg16l1介导的自噬驱动的。
IF 14.3 Pub Date : 2026-01-05 DOI: 10.1080/15548627.2025.2600906
Lisa Mayr, Julian Schwärzler, Laura Scheffauer, Zhigang Rao, Dietmar Rieder, Felix Grabherr, Moritz Meyer, Jakob Scheler, Almina Jukic, Luis Zundel, Verena Wieser, Andreas Zollner, Anna Simonini, Stefanie Auer, Lisa Amann, Maureen Philipp, Johannes Leierer, Richard Hilbe, Günter Weiss, Patrizia Moser, Philip Rosenstiel, Qitao Ran, Richard S Blumberg, Arthur Kaser, Andreas Koeberle, Zlatko Trajanoski, Herbert Tilg, Timon E Adolph

Macroautophagy/autophagy exerts multilayered protective functions in intestinal epithelial cells (IECs) while a loss-of-function genetic variant in ATG16L1 (autophagy related 16 like 1) is associated with risk for developing Crohn disease (CD). Westernization of diet, partly characterized by excess of long-chain fatty acids, contributes to CD, and a metabolic control of intestinal inflammation is emerging. Here, we report an unexpected inflammatory function for ATG16L1-mediated autophagy in Crohn-like metabolic enteritis of mice induced by polyunsaturated fatty acid (PUFA) excess in a western diet. Dietary PUFAs induce ATG16L1-mediated conventional autophagy in IECs, which is required for PUFA-induced chemokine production and metabolic enteritis. By transcriptomic and lipidomic profiling of IECs, we demonstrate that ATG16L1 is required for PUFA-induced inflammatory stress signaling specifically mediated by TLR2 (toll-like receptor 2) and the production of arachidonic acid metabolites. Our study identifies ATG16L1-mediated autophagy in IECs as an inflammatory hub driving metabolic enteritis, which challenges the perception of protective autophagy in the context of diet westernization.Abbreviations: AA: arachidonic acid; ATG16L1: autophagy related 16 like 1; CD: Crohn disease; CXCL1: C-X-C motif chemokine ligand 1; ER: endoplasmic reticulum; GFP: green fluorescent protein; GPX4: glutathione peroxidase 4; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; PUFA: polyunsaturated fatty acid; SDA: stearidonic acid; TLR2: toll-like receptor 2; WT: wild-type.

巨噬/自噬在肠上皮细胞(IECs)中发挥多层保护功能,而ATG16L1(自噬相关16样1)的功能丧失遗传变异与发生克罗恩病(CD)的风险相关。饮食西化,部分特征是长链脂肪酸过量,有助于乳糜泻,肠道炎症的代谢控制正在出现。在这里,我们报道了在西方饮食中过量多不饱和脂肪酸(PUFA)诱导的小鼠克罗恩样代谢性肠炎中atg16l1介导的自噬的意想不到的炎症功能。膳食pufa诱导IECs中atg16l1介导的常规自噬,这是pufa诱导的趋化因子产生和代谢性肠炎所必需的。通过IECs的转录组学和脂质组学分析,我们证明ATG16L1是由TLR2 (toll样受体2)特异性介导的pufa诱导的炎症应激信号通路和花生四烯酸代谢物的产生所必需的。我们的研究确定了IECs中atg16l1介导的自噬是驱动代谢性肠炎的炎症枢纽,这挑战了饮食西化背景下保护性自噬的看法。缩写:AA:花生四烯酸;ATG16L1:自噬相关16样1;CD:克罗恩病;CXCL1: C-X-C基序趋化因子配体1;ER:内质网;GFP:绿色荧光蛋白;GPX4:谷胱甘肽过氧化物酶4;IBD:炎症性肠病;IECs:肠上皮细胞;PTGS2/COX2:前列腺素内过氧化物合成酶2;PUFA:多不饱和脂肪酸;SDA:硬脂酸;TLR2: toll样受体2;WT:野生型。
{"title":"Chronic enteritis triggered by diet westernization is driven by epithelial ATG16L1-mediated autophagy.","authors":"Lisa Mayr, Julian Schwärzler, Laura Scheffauer, Zhigang Rao, Dietmar Rieder, Felix Grabherr, Moritz Meyer, Jakob Scheler, Almina Jukic, Luis Zundel, Verena Wieser, Andreas Zollner, Anna Simonini, Stefanie Auer, Lisa Amann, Maureen Philipp, Johannes Leierer, Richard Hilbe, Günter Weiss, Patrizia Moser, Philip Rosenstiel, Qitao Ran, Richard S Blumberg, Arthur Kaser, Andreas Koeberle, Zlatko Trajanoski, Herbert Tilg, Timon E Adolph","doi":"10.1080/15548627.2025.2600906","DOIUrl":"10.1080/15548627.2025.2600906","url":null,"abstract":"<p><p>Macroautophagy/autophagy exerts multilayered protective functions in intestinal epithelial cells (IECs) while a loss-of-function genetic variant in ATG16L1 (autophagy related 16 like 1) is associated with risk for developing Crohn disease (CD). Westernization of diet, partly characterized by excess of long-chain fatty acids, contributes to CD, and a metabolic control of intestinal inflammation is emerging. Here, we report an unexpected inflammatory function for ATG16L1-mediated autophagy in Crohn-like metabolic enteritis of mice induced by polyunsaturated fatty acid (PUFA) excess in a western diet. Dietary PUFAs induce ATG16L1-mediated conventional autophagy in IECs, which is required for PUFA-induced chemokine production and metabolic enteritis. By transcriptomic and lipidomic profiling of IECs, we demonstrate that ATG16L1 is required for PUFA-induced inflammatory stress signaling specifically mediated by TLR2 (toll-like receptor 2) and the production of arachidonic acid metabolites. Our study identifies ATG16L1-mediated autophagy in IECs as an inflammatory hub driving metabolic enteritis, which challenges the perception of protective autophagy in the context of diet westernization.<b>Abbreviations</b>: AA: arachidonic acid; ATG16L1: autophagy related 16 like 1; CD: Crohn disease; CXCL1: C-X-C motif chemokine ligand 1; ER: endoplasmic reticulum; GFP: green fluorescent protein; GPX4: glutathione peroxidase 4; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; PUFA: polyunsaturated fatty acid; SDA: stearidonic acid; TLR2: toll-like receptor 2; WT: wild-type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-18"},"PeriodicalIF":14.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145746304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TBK1 orchestrates autophagy and endo-lysosomal pathways in human neurons. TBK1在人类神经元中协调自噬和内溶酶体通路。
IF 14.3 Pub Date : 2026-01-04 DOI: 10.1080/15548627.2025.2609924
Daniel A Mordes, Julie Smeyers

Haploinsufficiency of TBK1 causes familial ALS and frontotemporal dementia (FTD), yet the mechanisms by which TBK1 loss leads to neurodegeneration remain unclear. Using deep proteomics and phospho-proteomics, we demonstrate that TBK1 regulates select macroautophagy/autophagy factors, targeting cargo receptors and autophagy initiation factors, and also sustains the phosphorylation of the late endosomal marker RAB7A in stem cells and stem cell-derived excitatory neurons. We further uncovered novel TBK1-dependent phosphorylation sites in the key autophagy protein SQSTM1/p62. Loss of TBK1 function results in a cell-autonomous neurodegenerative phenotype characterized by impaired neurite outgrowth and lysosomal dysfunction.

TBK1单倍体不足可导致家族性ALS和额颞叶痴呆(FTD),但TBK1缺失导致神经变性的机制尚不清楚。通过深层蛋白质组学和磷酸化蛋白质组学,研究人员发现TBK1调控了特定的巨噬/自噬因子,靶向转运受体和自噬起始因子,并在干细胞和干细胞源性兴奋性神经元中维持晚期内体标记物RAB7A的磷酸化。我们进一步发现了关键自噬蛋白SQSTM1/p62中新的tbk1依赖性磷酸化位点。TBK1功能的丧失导致细胞自主神经退行性表型,其特征是神经突生长受损和溶酶体功能障碍。
{"title":"TBK1 orchestrates autophagy and endo-lysosomal pathways in human neurons.","authors":"Daniel A Mordes, Julie Smeyers","doi":"10.1080/15548627.2025.2609924","DOIUrl":"https://doi.org/10.1080/15548627.2025.2609924","url":null,"abstract":"<p><p>Haploinsufficiency of TBK1 causes familial ALS and frontotemporal dementia (FTD), yet the mechanisms by which TBK1 loss leads to neurodegeneration remain unclear. Using deep proteomics and phospho-proteomics, we demonstrate that TBK1 regulates select macroautophagy/autophagy factors, targeting cargo receptors and autophagy initiation factors, and also sustains the phosphorylation of the late endosomal marker RAB7A in stem cells and stem cell-derived excitatory neurons. We further uncovered novel TBK1-dependent phosphorylation sites in the key autophagy protein SQSTM1/p62. Loss of TBK1 function results in a cell-autonomous neurodegenerative phenotype characterized by impaired neurite outgrowth and lysosomal dysfunction.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-3"},"PeriodicalIF":14.3,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145901889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive methodological evaluation of V-ATPase assembly in the context of cardiac lipid overload: implications for (endo)lysosomal function and autophagy. 在心脏脂质超载的背景下对v - atp酶组装的综合方法学评价:对(内)溶酶体功能和自噬的影响。
IF 14.3 Pub Date : 2026-01-04 DOI: 10.1080/15548627.2025.2608963
Hongtao Tie, Mengqian Hou, Jun Zhang, Martijn F Hoes, Dietbert Neumann, Joost J F P Luiken, Shujin Wang

The vacuolar-type H+-translocating ATPase (V-ATPase) plays a pivotal role in cellular homeostasis by acidifying endosomes and lysosomes, regulating key processes such as autophagy and membrane trafficking. While the importance of V-ATPase in these functions is well-established, the methodologies for studying its assembly and function remain varied and under-characterized. In this study, we systematically validated and compared methodologies for assessing V-ATPase assembly and endo/lysosomal acidification under physiological and high-fat conditions, both in vitro and in vivo. Various techniques, including fractionation, immunoprecipitation, immunofluorescence microscopy, and proximity ligation assays, were evaluated using cardiomyocyte cell lines, rat models of lipid overload, and two heart-specific V-ATPase-knockout mouse models (V-ATPase subunits ATP6V1G1 and ATP6V0D2). High palmitate (HP) and bafilomycin A1 (BafA) were used to manipulate v-ATPase function, while a colorimetric assay assessed proton-pumping activity. Results consistently showed that HP and BafA induced V-ATPase disassembly and inhibited proton-pumping activity, leading to impaired endo/lysosomal acidification and autophagy inhibition upon fusion of autophagosomes with lysosomes. Similar findings were observed in vivo, where a high-fat diet (HFD) reproduced the effects of HP on cardiac tissue. The methodologies were further validated in two heart-specific V-ATPase-knockout mouse models, demonstrating consistent outcomes across different experimental approaches. This study establishes a robust framework for evaluating V-ATPase assembly and function. The validated methodologies reveal that lipid overload inhibits autophagy and contributes to insulin resistance by inducing V-ATPase disassembly and subsequent lysosomal dysfunction. These findings offer insights into the molecular mechanisms underlying metabolic diseases and provide valuable tools for further research.

液泡型H+易位atp酶(v - atp酶)通过酸化内体和溶酶体,调节自噬和膜运输等关键过程,在细胞稳态中起关键作用。虽然v - atp酶在这些功能中的重要性是公认的,但研究其组装和功能的方法仍然是多种多样的。在这项研究中,我们系统地验证和比较了生理和高脂肪条件下评估v - atp酶组装和内切酶/溶酶体酸化的方法,无论是体外还是体内。使用心肌细胞系、脂质过载大鼠模型和两种心脏特异性v - atp酶敲除小鼠模型(v - atp酶亚基ATP6V1G1和ATP6V0D2)评估各种技术,包括分离、免疫沉淀、免疫荧光显微镜和近距离结扎试验。使用高棕榈酸酯(HP)和巴菲霉素A1 (BafA)来控制v- atp酶的功能,同时用比色法评估质子泵送活性。结果一致表明,HP和BafA诱导V-ATPase分解并抑制质子泵送活性,导致自噬体与溶酶体融合后内端/溶酶体酸化受损和自噬抑制。在体内观察到类似的结果,高脂肪饮食(HFD)再现了HP对心脏组织的影响。在两种心脏特异性v - atp酶敲除小鼠模型中进一步验证了这些方法,证明了不同实验方法的一致结果。本研究为评估v - atp酶的组装和功能建立了一个健全的框架。经过验证的方法表明,脂质过载抑制自噬,并通过诱导v - atp酶分解和随后的溶酶体功能障碍来促进胰岛素抵抗。这些发现对代谢性疾病的分子机制提供了新的见解,并为进一步的研究提供了有价值的工具。
{"title":"Comprehensive methodological evaluation of V-ATPase assembly in the context of cardiac lipid overload: implications for (endo)lysosomal function and autophagy.","authors":"Hongtao Tie, Mengqian Hou, Jun Zhang, Martijn F Hoes, Dietbert Neumann, Joost J F P Luiken, Shujin Wang","doi":"10.1080/15548627.2025.2608963","DOIUrl":"10.1080/15548627.2025.2608963","url":null,"abstract":"<p><p>The vacuolar-type H<sup>+</sup>-translocating ATPase (V-ATPase) plays a pivotal role in cellular homeostasis by acidifying endosomes and lysosomes, regulating key processes such as autophagy and membrane trafficking. While the importance of V-ATPase in these functions is well-established, the methodologies for studying its assembly and function remain varied and under-characterized. In this study, we systematically validated and compared methodologies for assessing V-ATPase assembly and endo/lysosomal acidification under physiological and high-fat conditions, both <i>in vitro</i> and <i>in vivo</i>. Various techniques, including fractionation, immunoprecipitation, immunofluorescence microscopy, and proximity ligation assays, were evaluated using cardiomyocyte cell lines, rat models of lipid overload, and two heart-specific V-ATPase-knockout mouse models (V-ATPase subunits ATP6V1G1 and ATP6V0D2). High palmitate (HP) and bafilomycin A<sub>1</sub> (BafA) were used to manipulate v-ATPase function, while a colorimetric assay assessed proton-pumping activity. Results consistently showed that HP and BafA induced V-ATPase disassembly and inhibited proton-pumping activity, leading to impaired endo/lysosomal acidification and autophagy inhibition upon fusion of autophagosomes with lysosomes. Similar findings were observed <i>in vivo</i>, where a high-fat diet (HFD) reproduced the effects of HP on cardiac tissue. The methodologies were further validated in two heart-specific V-ATPase-knockout mouse models, demonstrating consistent outcomes across different experimental approaches. This study establishes a robust framework for evaluating V-ATPase assembly and function. The validated methodologies reveal that lipid overload inhibits autophagy and contributes to insulin resistance by inducing V-ATPase disassembly and subsequent lysosomal dysfunction. These findings offer insights into the molecular mechanisms underlying metabolic diseases and provide valuable tools for further research.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":14.3,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145812405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring lysosome damage and lysophagy in vivo. 体内溶酶体损伤及溶噬测定。
IF 14.3 Pub Date : 2026-01-04 DOI: 10.1080/15548627.2025.2608974
Zelai Wu, Hanyu Zhan, Zhiming Huang, Changjing Wang, Boran Li, Yepeng Hu, Zhida Chen, Wei Liu, Weihua Gong, Yongjuan Sang, Qiming Sun

Lysosome homeostasis is vital for cellular fitness due to the essential roles of this organelle in various pathways. Given their extensive workload, lysosomes are prone to damage, which can stimulate lysosomal quality control mechanisms such as biogenesis, repair, or autophagic removal - a process termed lysophagy. Despite recent advances highlighting lysophagy as a critical mechanism for lysosome maintenance, the extent of lysosome integrity perturbation and the magnitude of lysophagy in vivo remain largely unexplored. Additionally, the pathophysiological relevance of lysophagy is poorly understood. To address these gaps, it is necessary to develop quantifiable methods for evaluating lysosome damage and lysophagy flux in vivo. To this end, we created two transgenic mouse lines expressing a tandem fluorescent LGALS3/galectin 3 probe (tfGAL3), either constitutively or conditionally under Cre recombinase control, utilizing the property of LGALS3 to recognize damaged lysosomes. This tool enables spatiotemporal visualization of lysosome damage and lysophagy activity at single-cell resolution in vivo. Systemic analysis across various organs, tissues, and primary cultures from these lysophagy reporter mice revealed significant variations in basal lysophagy, both in vivo and in vitro. Additionally, this study identified substantial changes in lysosome integrity and lysophagy flux in different tissues under stress conditions such as starvation, acute kidney injury and diabetic modeling. In conclusion, these complementary lysophagy reporter models are valuable resources for both basic and translational research.Abbreviation: AAV: adeno-associated virus; ATG7: autophagy related 7; CA-tfGAL3: cre-recombinase-activated tandem fluorescent LGALS3; DAPI: 4',6-diamidino-2-phenylindole; DM: diabetes mellitus; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HFD: high-fat diet; Igs2/H11/Hipp11: intergenic site 2; IST1: IST1 factor associated with ESCRT-III; KI: knock-in; LAMP1: lysosomal-associated membrane protein 1; LGALS3: lectin, galactoside-binding, soluble, 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; MEFs: mouse embryonic fibroblasts; NaOx: sodium oxalate; PDCD6IP: programmed cell death 6 interacting protein; PTECs: proximal tubular epithelial cells; RFP: red fluorescent protein; STZ: streptozotocin; TAM: tamoxifen; tfGAL3: tandem fluorescent LGALS3; TMEM192: transmembrane protein 192.

由于溶酶体在各种途径中的重要作用,溶酶体的稳态对细胞适应性至关重要。由于它们的负荷很大,溶酶体很容易受到损伤,这可以刺激溶酶体质量控制机制,如生物发生、修复或自噬去除——这一过程被称为溶噬。尽管最近的进展强调溶噬是溶酶体维持的关键机制,但溶酶体完整性扰动的程度和体内溶噬的程度仍未得到充分研究。此外,对溶食的病理生理相关性了解甚少。为了解决这些空白,有必要开发可量化的方法来评估体内溶酶体损伤和溶噬通量。为此,我们创建了两个转基因小鼠系,表达串联荧光LGALS3/凝集素3探针(tfGAL3),在Cre重组酶控制下组成或条件地利用LGALS3识别受损溶酶体的特性。该工具能够在单细胞分辨率下对体内溶酶体损伤和溶噬活性进行时空可视化。对来自这些噬报告小鼠的各种器官、组织和原代培养物的系统分析显示,在体内和体外,基础噬有显著变化。此外,本研究还发现,在饥饿、急性肾损伤和糖尿病模型等应激条件下,不同组织的溶酶体完整性和溶噬通量发生了实质性变化。总之,这些互补的溶体吞噬报告模型是基础研究和转化研究的宝贵资源。缩写:AAV:腺相关病毒;ATG7:自噬相关7;CA-tfGAL3: cre-重组酶激活串联荧光LGALS3;6-diamidino-2-phenylindole DAPI: 4;DM:糖尿病;ESCRT:运输所需的内体分选复合体;GFP:绿色荧光蛋白;HFD:高脂肪饮食;Igs2/H11/ hip11:基因间位点2;IST1:与ESCRT-III相关的IST1因子;KI:敲入;LAMP1:溶酶体相关膜蛋白1;LGALS3:凝集素,半乳糖结合,可溶性,3;LLOMe: l-亮氨酸甲基氢溴化物;mef:小鼠胚胎成纤维细胞;NaOx:草酸钠;PDCD6IP:程序性细胞死亡6相互作用蛋白;PTECs:近端小管上皮细胞;RFP:红色荧光蛋白;STZ:链脲霉素;TAM:三苯氧胺;tfGAL3:串联荧光LGALS3;TMEM192:跨膜蛋白192。
{"title":"Measuring lysosome damage and lysophagy in vivo.","authors":"Zelai Wu, Hanyu Zhan, Zhiming Huang, Changjing Wang, Boran Li, Yepeng Hu, Zhida Chen, Wei Liu, Weihua Gong, Yongjuan Sang, Qiming Sun","doi":"10.1080/15548627.2025.2608974","DOIUrl":"https://doi.org/10.1080/15548627.2025.2608974","url":null,"abstract":"<p><p>Lysosome homeostasis is vital for cellular fitness due to the essential roles of this organelle in various pathways. Given their extensive workload, lysosomes are prone to damage, which can stimulate lysosomal quality control mechanisms such as biogenesis, repair, or autophagic removal - a process termed lysophagy. Despite recent advances highlighting lysophagy as a critical mechanism for lysosome maintenance, the extent of lysosome integrity perturbation and the magnitude of lysophagy in vivo remain largely unexplored. Additionally, the pathophysiological relevance of lysophagy is poorly understood. To address these gaps, it is necessary to develop quantifiable methods for evaluating lysosome damage and lysophagy flux in vivo. To this end, we created two transgenic mouse lines expressing a tandem fluorescent LGALS3/galectin 3 probe (tfGAL3), either constitutively or conditionally under Cre recombinase control, utilizing the property of LGALS3 to recognize damaged lysosomes. This tool enables spatiotemporal visualization of lysosome damage and lysophagy activity at single-cell resolution in vivo. Systemic analysis across various organs, tissues, and primary cultures from these lysophagy reporter mice revealed significant variations in basal lysophagy, both in vivo and in vitro. Additionally, this study identified substantial changes in lysosome integrity and lysophagy flux in different tissues under stress conditions such as starvation, acute kidney injury and diabetic modeling. In conclusion, these complementary lysophagy reporter models are valuable resources for both basic and translational research.<b>Abbreviation:</b> AAV: adeno-associated virus; ATG7: autophagy related 7; CA-tfGAL3: cre-recombinase-activated tandem fluorescent LGALS3; DAPI: 4',6-diamidino-2-phenylindole; DM: diabetes mellitus; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HFD: high-fat diet; Igs2/H11/Hipp11: intergenic site 2; IST1: IST1 factor associated with ESCRT-III; KI: knock-in; LAMP1: lysosomal-associated membrane protein 1; LGALS3: lectin, galactoside-binding, soluble, 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; MEFs: mouse embryonic fibroblasts; NaOx: sodium oxalate; PDCD6IP: programmed cell death 6 interacting protein; PTECs: proximal tubular epithelial cells; RFP: red fluorescent protein; STZ: streptozotocin; TAM: tamoxifen; tfGAL3: tandem fluorescent LGALS3; TMEM192: transmembrane protein 192.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-18"},"PeriodicalIF":14.3,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145901870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A self-sensing vacuole/lysosome: V-ATPase dysfunction activates selective autophagy. 自噬点-自我感应液泡/溶酶体:v - atp酶功能障碍激活选择性自噬。
IF 14.3 Pub Date : 2026-01-02 DOI: 10.1080/15548627.2025.2604345
Yuxiang Huang, Daniel J Klionsky

Macroautophagy/autophagy has long been viewed as being strictly dependent on vacuolar or lysosomal acidity, with the vacuolar-type H+-translocating ATPase (V-ATPase) functioning mainly as a proton pump that sustains degradation. Our recent paper overturns this paradigm, revealing that loss of V-ATPase activity paradoxically induces a selective autophagy program in nutrient-replete Saccharomyces cerevisiae. Vacuolar deacidification triggers a signaling cascade through the Gcn2-Gcn4/ATF4 integrated stress response, which drives Atg11-dependent ribophagy even when TORC1 remains active. This "V-ATPase-dependent autophagy" operates as a self-corrective feedback loop: when the vacuole's degradative capacity falters, it signals its own dysfunction to restore homeostasis. Tryptophan and NAD+ metabolism modulate this response, linking metabolic balance to autophagy induction. This discovery reframes the vacuole/lysosome from a passive endpoint to an active sensor of cellular integrity. It also challenges the use of V-ATPase inhibitors such as bafilomycin A1 as neutral autophagy flux blockers, because inhibition itself can stimulate autophagy induction. Collectively, these findings position the V-ATPase as a bidirectional regulator - both gatekeeper and sentinel - governing how cells translate organelle stress into adaptive autophagy.Abbreviation: ATG: autophagy related; FL: follicular lymphoma; TORC1: TOR complex 1; V-ATPase: vacuolar-type H+-translocating ATPase.

长期以来,人们一直认为巨噬/自噬严格依赖于液泡或溶酶体的酸度,液泡型H+易位atp酶(v - atp酶)主要作为维持降解的质子泵起作用。我们最近的论文推翻了这一范式,揭示了v - atp酶活性的丧失在营养丰富的酿酒酵母中矛盾地诱导了选择性自噬程序。液泡脱酸通过Gcn2-Gcn4/ATF4综合应激反应触发信号级联,即使在TORC1保持活性的情况下,也会驱动atg11依赖性核噬。这种“依赖v - atp酶的自噬”是一种自我纠正的反馈回路:当液泡的降解能力下降时,它就会发出自身功能失调的信号,以恢复体内平衡。色氨酸和NAD+代谢调节这种反应,将代谢平衡与自噬诱导联系起来。这一发现将液泡/溶酶体从被动端点重新定位为细胞完整性的主动传感器。这也挑战了v - atp酶抑制剂如巴菲霉素A1作为中性自噬通量阻滞剂的使用,因为抑制本身可以刺激自噬诱导。总的来说,这些发现将v - atp酶定位为一个双向调节剂——既是看门人又是哨兵——控制细胞如何将细胞器压力转化为适应性自噬。
{"title":"A self-sensing vacuole/lysosome: V-ATPase dysfunction activates selective autophagy.","authors":"Yuxiang Huang, Daniel J Klionsky","doi":"10.1080/15548627.2025.2604345","DOIUrl":"10.1080/15548627.2025.2604345","url":null,"abstract":"<p><p>Macroautophagy/autophagy has long been viewed as being strictly dependent on vacuolar or lysosomal acidity, with the vacuolar-type H<sup>+</sup>-translocating ATPase (V-ATPase) functioning mainly as a proton pump that sustains degradation. Our recent paper overturns this paradigm, revealing that loss of V-ATPase activity paradoxically induces a selective autophagy program in nutrient-replete <i>Saccharomyces cerevisiae</i>. Vacuolar deacidification triggers a signaling cascade through the Gcn2-Gcn4/ATF4 integrated stress response, which drives Atg11-dependent ribophagy even when TORC1 remains active. This \"V-ATPase-dependent autophagy\" operates as a self-corrective feedback loop: when the vacuole's degradative capacity falters, it signals its own dysfunction to restore homeostasis. Tryptophan and NAD<sup>+</sup> metabolism modulate this response, linking metabolic balance to autophagy induction. This discovery reframes the vacuole/lysosome from a passive endpoint to an active sensor of cellular integrity. It also challenges the use of V-ATPase inhibitors such as bafilomycin A<sub>1</sub> as neutral autophagy flux blockers, because inhibition itself can stimulate autophagy induction. Collectively, these findings position the V-ATPase as a bidirectional regulator - both gatekeeper and sentinel - governing how cells translate organelle stress into adaptive autophagy.<b>Abbreviation</b>: ATG: autophagy related; FL: follicular lymphoma; TORC1: TOR complex 1; V-ATPase: vacuolar-type H<sup>+</sup>-translocating ATPase.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-4"},"PeriodicalIF":14.3,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatic MC3R is a regulator of lipid droplet autophagy and liver steatosis. 肝脏MC3R是脂滴自噬和肝脏脂肪变性的调节因子。
IF 14.3 Pub Date : 2026-01-01 Epub Date: 2025-04-21 DOI: 10.1080/15548627.2025.2495224
Tushar P Patel, Jack A Yanovski

Intrahepatic triglyceride breakdown and recycling occur through lipolysis and lipid droplet (LD) macroautophagy/autophagy to regulate systemic fat partitioning. We recently demonstrated that MC3R is important for hepatic autophagy and peripheral metabolism, beyond its established functions in the CNS, where it affects energy homeostasis, feeding regulation, and puberty. MC3R agonists activate hepatocyte autophagy through LC3-II activation, TFEB cytoplasmic-to-nuclear translocation, and subsequent downstream autophagy gene activation. Global mc3r knockout mice develop obesity with increased hepatic triglyceride accumulation and blunted hepatocellular autophagosome-lysosome docking, leading to defective lipid droplet clearance. Hepatic Mc3r reactivation in global knockouts improves hepatocellular autophagy, lipid metabolism, mitochondrial respiration, energy expenditure, body fat, and body weight. These results reveal an autonomous role for hepatic MC3R in regulating lipid droplet autophagy, liver steatosis, and systemic adiposity.Abbreviation: AP:autophagosome; CNS:central nervous system; EIF4EBP1: eukaryotic translation initiationfactor 4E binding protein 1; EM: electron microscopy; LD: lipiddroplets; GFP: green fluorescent protein; MAFLD: metabolic-associatedfatty liver disease; MAP1LC3/LC3-II: microtubule-associated protein 1light chain 3-II; MC3R: melanocortin 3 receptor; MTORC1: mechanistictarget of rapamycin kinase complex 1; NDP-42:norleucine D-phenylalanine compound-42; TFEB: transcriptionfactor EB.

肝内甘油三酯的分解和再循环通过脂解和脂滴(LD)巨噬/自噬来调节全身脂肪分配。我们最近证明,MC3R对肝自噬和外周代谢很重要,超出了其在中枢神经系统中的既定功能,在中枢神经系统中,它影响能量稳态、摄食调节和青春期。MC3R激动剂通过LC3-II激活、TFEB细胞质到核易位以及随后的下游自噬基因激活来激活肝细胞自噬。全球mc3r基因敲除小鼠发生肥胖,肝脏甘油三酯积累增加,肝细胞自噬体-溶酶体对接减弱,导致脂滴清除缺陷。在全局基因敲除中,肝脏Mc3r再激活可改善肝细胞自噬、脂质代谢、线粒体呼吸、能量消耗、体脂和体重。这些结果揭示了肝脏MC3R在调节脂滴自噬、肝脏脂肪变性和全身性肥胖中的自主作用。缩写:美联社:自噬小体;CNS:中枢神经系统;EIF4EBP1:真核翻译起始因子4E结合蛋白1;EM:电子显微镜;LD: lipiddroplets;GFP:绿色荧光蛋白;MAFLD:代谢相关脂肪性肝病;MAP1LC3/LC3-II:微管相关蛋白1轻链3-II;MC3R:黑素皮质素3受体;MTORC1:雷帕霉素激酶复合物1的机制靶点NDP-42:去甲亮氨酸d-苯丙氨酸化合物-42;TFEB:转录因子EB。
{"title":"Hepatic MC3R is a regulator of lipid droplet autophagy and liver steatosis.","authors":"Tushar P Patel, Jack A Yanovski","doi":"10.1080/15548627.2025.2495224","DOIUrl":"10.1080/15548627.2025.2495224","url":null,"abstract":"<p><p>Intrahepatic triglyceride breakdown and recycling occur through lipolysis and lipid droplet (LD) macroautophagy/autophagy to regulate systemic fat partitioning. We recently demonstrated that MC3R is important for hepatic autophagy and peripheral metabolism, beyond its established functions in the CNS, where it affects energy homeostasis, feeding regulation, and puberty. MC3R agonists activate hepatocyte autophagy through LC3-II activation, TFEB cytoplasmic-to-nuclear translocation, and subsequent downstream autophagy gene activation. Global <i>mc3r</i> knockout mice develop obesity with increased hepatic triglyceride accumulation and blunted hepatocellular autophagosome-lysosome docking, leading to defective lipid droplet clearance. Hepatic <i>Mc3r</i> reactivation in global knockouts improves hepatocellular autophagy, lipid metabolism, mitochondrial respiration, energy expenditure, body fat, and body weight. These results reveal an autonomous role for hepatic MC3R in regulating lipid droplet autophagy, liver steatosis, and systemic adiposity.<b>Abbreviation</b>: AP:autophagosome; CNS:central nervous system; EIF4EBP1: eukaryotic translation initiationfactor 4E binding protein 1; EM: electron microscopy; LD: lipiddroplets; GFP: green fluorescent protein; MAFLD: metabolic-associatedfatty liver disease; MAP1LC3/LC3-II: microtubule-associated protein 1light chain 3-II; MC3R: melanocortin 3 receptor; MTORC1: mechanistictarget of rapamycin kinase complex 1; NDP-42:norleucine D-phenylalanine compound-42; TFEB: transcriptionfactor EB.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"229-231"},"PeriodicalIF":14.3,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12703796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144053592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autophagy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1