IRnet: Immunotherapy response prediction using pathway knowledge-informed graph neural network

IF 13 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2024-08-07 DOI:10.1016/j.jare.2024.07.036
Yuexu Jiang , Manish Sridhar Immadi , Duolin Wang , Shuai Zeng , Yen On Chan , Jing Zhou , Dong Xu , Trupti Joshi
{"title":"IRnet: Immunotherapy response prediction using pathway knowledge-informed graph neural network","authors":"Yuexu Jiang ,&nbsp;Manish Sridhar Immadi ,&nbsp;Duolin Wang ,&nbsp;Shuai Zeng ,&nbsp;Yen On Chan ,&nbsp;Jing Zhou ,&nbsp;Dong Xu ,&nbsp;Trupti Joshi","doi":"10.1016/j.jare.2024.07.036","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI treatments.</div></div><div><h3>Objectives</h3><div>Identifying ICI responders before treatment could greatly conserve medical resources, minimize potential drug side effects, and expedite the search for alternative therapies. Our goal is to introduce a novel deep-learning method to predict ICI treatment responses in cancer patients.</div></div><div><h3>Methods</h3><div>The proposed deep-learning framework leverages graph neural network and biological pathway knowledge. We trained and tested our method using ICI-treated patients’ data from several clinical trials covering melanoma, gastric cancer, and bladder cancer.</div></div><div><h3>Results</h3><div>Our results demonstrate that this predictive model outperforms current state-of-the-art methods and tumor microenvironment-based predictors. Additionally, the model quantifies the importance of pathways, pathway interactions, and genes in its predictions. A web server for IRnet has been developed and deployed, providing broad accessibility to users at <span><span>https://irnet.missouri.edu</span><svg><path></path></svg></span>.</div></div><div><h3>Conclusion</h3><div>IRnet is a competitive tool for predicting patient responses to immunotherapy, specifically ICIs. Its interpretability also offers valuable insights into the mechanisms underlying ICI treatments.</div></div>","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"72 ","pages":"Pages 319-331"},"PeriodicalIF":13.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090123224003205","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI treatments.

Objectives

Identifying ICI responders before treatment could greatly conserve medical resources, minimize potential drug side effects, and expedite the search for alternative therapies. Our goal is to introduce a novel deep-learning method to predict ICI treatment responses in cancer patients.

Methods

The proposed deep-learning framework leverages graph neural network and biological pathway knowledge. We trained and tested our method using ICI-treated patients’ data from several clinical trials covering melanoma, gastric cancer, and bladder cancer.

Results

Our results demonstrate that this predictive model outperforms current state-of-the-art methods and tumor microenvironment-based predictors. Additionally, the model quantifies the importance of pathways, pathway interactions, and genes in its predictions. A web server for IRnet has been developed and deployed, providing broad accessibility to users at https://irnet.missouri.edu.

Conclusion

IRnet is a competitive tool for predicting patient responses to immunotherapy, specifically ICIs. Its interpretability also offers valuable insights into the mechanisms underlying ICI treatments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IRnet:利用路径知识图神经网络预测免疫疗法反应。
简介免疫检查点抑制剂(ICIs)是治疗各种癌症的有效而精确的疗法,可显著提高对其反应积极的患者的生存率。然而,只有少数患者能从 ICI 治疗中获益:目标:在治疗前识别 ICI 反应者可大大节约医疗资源,最大限度地减少潜在的药物副作用,并加快寻找替代疗法。我们的目标是引入一种新的深度学习方法来预测癌症患者的 ICI 治疗反应:我们提出的深度学习框架利用了图神经网络和生物通路知识。我们使用来自黑色素瘤、胃癌和膀胱癌等多项临床试验的 ICI 治疗患者数据,对我们的方法进行了训练和测试:我们的结果表明,该预测模型优于目前最先进的方法和基于肿瘤微环境的预测方法。此外,该模型还量化了通路、通路相互作用和基因在预测中的重要性。IRnet 的网络服务器已经开发和部署完毕,用户可以通过 https://irnet.missouri.edu.Conclusion 广泛访问:IRnet 是预测病人对免疫疗法(特别是 ICIs)反应的一种有竞争力的工具。它的可解释性还为了解 ICI 治疗的基本机制提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
Rapid profiling of polymyxin B susceptibility in gram-negative bacteria with a novel polymyxin-derived fluorescent probe METTL4 enhances GLI1 translation through m6Am modification to promote tumor progression as a therapeutic target for hepatocellular carcinoma Guaianolide dimer KGA-1002 targets GRP94 and triggers unfolded protein response-associated degradation of SKP2/AKT axis as a novel antihepatoma agent Gut microbiota dysbiosis transmits deoxynivalenol toxicity and triggers liver inflammation Genotype-driven variations in lncRNA expression underlie predisposition to high-grade serous ovarian cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1