{"title":"Discerning computational, in vitro and in vivo investigations of self-assembling empagliflozin polymeric micelles in type-2 diabetes.","authors":"Priti Wagh, Shivani Savaliya, Bhrugesh Joshi, Bhavin Vyas, Ketan Kuperkar, Manisha Lalan, Pranav Shah","doi":"10.1007/s13346-024-01658-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption.</p><p><strong>Methodology: </strong>In silico studies-molecular docking, molecular dynamic simulation (MDS), and quantum chemical calculation were employed to study the interaction of EMPA with different polymers. EMPA loaded TPGS polymeric micelles (EMPA-TPGS-PMs) were formulated by direct dissolution method and characterized in terms of surface morphology, entrapment, particle size, in vitro drug release, and in vitro cytotoxicity (HEK293 cells). In vivo pharmacokinetic and pharmacodynamic studies were also performed.</p><p><strong>Results: </strong>The results suggested a good interaction between TPGS and EMPA with lowest binding energy compared to other polymers. Further MDS results and DFT calculations validated the stable binding of the complex hence TPGS was selected for further wet lab experiments. The EMPA-TPGS complex displayed lower value of Total energy (T.E.) than its individual components, indicating the overall stability of the complex while, the energy band gap (∆E) value lied between the two individual molecules, signifying the better electron transfer between HOMO and LUMO of the complex. Based on the solubility, entrapment and cytotoxicity studies, 5% TPGS was selected for formulating drug loaded micelles. EMPA-TPGS5-PMs presented a size of 9.008 ± 1.25 nm, Polydispersity index (PDI) of 0.254 ± 0.100, a controlled release behaviour upto 24 h. SEM and AFM images of the nanoformulation suggested spherical particles whereas, DSC, and PXRD studies confirmed the loss of crystallinity of EMPA. A 3.12-folds higher AUC and a greater reduction in blood glucose levels was exhibited by EMPA-TPGS5-PMs in comparison to EMPA-SUSP in mice model.</p><p><strong>Conclusion: </strong>EMPA-TPGS-PMs has exhibited better bio absorption and therapeutic effectiveness in diabetes treatment. This improved performance would open the possibility of dose reduction, reduced dosing frequency & dose-related side effects, improving pharmaco-economics and thereby improved overall compliance to the patient. However, this translation from bench to bedside would necessitate studies in higher animals and human volunteers.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"3568-3584"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01658-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption.
Methodology: In silico studies-molecular docking, molecular dynamic simulation (MDS), and quantum chemical calculation were employed to study the interaction of EMPA with different polymers. EMPA loaded TPGS polymeric micelles (EMPA-TPGS-PMs) were formulated by direct dissolution method and characterized in terms of surface morphology, entrapment, particle size, in vitro drug release, and in vitro cytotoxicity (HEK293 cells). In vivo pharmacokinetic and pharmacodynamic studies were also performed.
Results: The results suggested a good interaction between TPGS and EMPA with lowest binding energy compared to other polymers. Further MDS results and DFT calculations validated the stable binding of the complex hence TPGS was selected for further wet lab experiments. The EMPA-TPGS complex displayed lower value of Total energy (T.E.) than its individual components, indicating the overall stability of the complex while, the energy band gap (∆E) value lied between the two individual molecules, signifying the better electron transfer between HOMO and LUMO of the complex. Based on the solubility, entrapment and cytotoxicity studies, 5% TPGS was selected for formulating drug loaded micelles. EMPA-TPGS5-PMs presented a size of 9.008 ± 1.25 nm, Polydispersity index (PDI) of 0.254 ± 0.100, a controlled release behaviour upto 24 h. SEM and AFM images of the nanoformulation suggested spherical particles whereas, DSC, and PXRD studies confirmed the loss of crystallinity of EMPA. A 3.12-folds higher AUC and a greater reduction in blood glucose levels was exhibited by EMPA-TPGS5-PMs in comparison to EMPA-SUSP in mice model.
Conclusion: EMPA-TPGS-PMs has exhibited better bio absorption and therapeutic effectiveness in diabetes treatment. This improved performance would open the possibility of dose reduction, reduced dosing frequency & dose-related side effects, improving pharmaco-economics and thereby improved overall compliance to the patient. However, this translation from bench to bedside would necessitate studies in higher animals and human volunteers.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.