Uranium in Drinking Water and Bladder Cancer: A Case-control Study in Michigan.

IF 1 4区 医学 Q4 ENVIRONMENTAL SCIENCES Health physics Pub Date : 2024-12-01 Epub Date: 2024-08-05 DOI:10.1097/HP.0000000000001880
Perpetua Uduba, Lissa Soares, Tesleem Babalola, Melissa Slotnick, Aaron Linder, Jaymie R Meliker
{"title":"Uranium in Drinking Water and Bladder Cancer: A Case-control Study in Michigan.","authors":"Perpetua Uduba, Lissa Soares, Tesleem Babalola, Melissa Slotnick, Aaron Linder, Jaymie R Meliker","doi":"10.1097/HP.0000000000001880","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Uranium is naturally occurring in groundwater used for drinking; however, health risks from naturally occurring concentrations are uncertain. Uranium can cause both radiological and chemical toxicity following ingestion. Bladder and kidneys receive a dose when uranium is excreted into the urine. Investigate the association between uranium in drinking water and bladder cancer risk in a case-control study. A population-based bladder cancer case-control study was conducted in 11 counties of southeastern Michigan. A total of 411 cases and 566 controls provided drinking water and toenail samples and answered questions about lifestyle and residential history. Uranium was measured in drinking water and toenails, and its association with bladder cancer was assessed via unconditional logistic regression models. Median uranium concentration in water was 0.12 μg L -1 , with a maximum of 4.99 μg L -1 , and median uranium concentration in toenails was 0.0031 μg g -1 . In adjusted regression models, there was a suggestion of a protective effect among those exposed to the upper quartile of uranium in drinking water (HR = 0.64, 95% CI: 0.43, 0.96) and toenails (HR 0.66; 95% CI 0.45, 0.96) compared to those in the lowest quartile. Our objective is to investigate additional adjustment of drinking water source at home residence at time of recruitment to address potential selection bias and confounding attenuated results toward the null for drinking water uranium (HR = 0.68, 95% CI: 0.44, 1.05) and toenail uranium (HR = 0.80, 95% CI: 0.53, 1.20). This case-control study showed no increased risk of bladder cancer associated with uranium found in drinking water or toenails.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"719-724"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Uranium is naturally occurring in groundwater used for drinking; however, health risks from naturally occurring concentrations are uncertain. Uranium can cause both radiological and chemical toxicity following ingestion. Bladder and kidneys receive a dose when uranium is excreted into the urine. Investigate the association between uranium in drinking water and bladder cancer risk in a case-control study. A population-based bladder cancer case-control study was conducted in 11 counties of southeastern Michigan. A total of 411 cases and 566 controls provided drinking water and toenail samples and answered questions about lifestyle and residential history. Uranium was measured in drinking water and toenails, and its association with bladder cancer was assessed via unconditional logistic regression models. Median uranium concentration in water was 0.12 μg L -1 , with a maximum of 4.99 μg L -1 , and median uranium concentration in toenails was 0.0031 μg g -1 . In adjusted regression models, there was a suggestion of a protective effect among those exposed to the upper quartile of uranium in drinking water (HR = 0.64, 95% CI: 0.43, 0.96) and toenails (HR 0.66; 95% CI 0.45, 0.96) compared to those in the lowest quartile. Our objective is to investigate additional adjustment of drinking water source at home residence at time of recruitment to address potential selection bias and confounding attenuated results toward the null for drinking water uranium (HR = 0.68, 95% CI: 0.44, 1.05) and toenail uranium (HR = 0.80, 95% CI: 0.53, 1.20). This case-control study showed no increased risk of bladder cancer associated with uranium found in drinking water or toenails.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
饮用水中的铀与膀胱癌:密歇根州病例对照研究》。
摘要:铀天然存在于饮用水的地下水中,但天然浓度对健康的危害尚不确定。铀摄入人体后会产生放射性和化学毒性。当铀随尿液排出体外时,膀胱和肾脏也会受到一定剂量的影响。在病例对照研究中调查饮用水中的铀与膀胱癌风险之间的关联。在密歇根州东南部的 11 个县开展了一项基于人群的膀胱癌病例对照研究。共有 411 名病例和 566 名对照者提供了饮用水和脚趾甲样本,并回答了有关生活方式和居住史的问题。对饮用水和脚趾甲中的铀进行了测量,并通过无条件逻辑回归模型评估了铀与膀胱癌的关系。水中铀浓度的中位数为 0.12 μg L-1,最大值为 4.99 μg L-1,脚趾甲中铀浓度的中位数为 0.0031 μg g-1。在调整后的回归模型中,与最低四分位数的人群相比,饮用水中铀含量处于最高四分位数的人群(HR = 0.64,95% CI:0.43,0.96)和脚趾甲中铀含量处于最低四分位数的人群(HR 0.66;95% CI 0.45,0.96)具有保护作用。我们的目标是对招募时家庭居住地的饮用水源进行额外调整,以解决潜在的选择偏差和混淆问题,使饮用水铀(HR = 0.68,95% CI:0.44,1.05)和脚趾甲铀(HR = 0.80,95% CI:0.53,1.20)的结果趋于无效。这项病例对照研究表明,膀胱癌风险的增加与饮用水或脚趾甲中发现的铀无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
期刊最新文献
Design of a Low-cost Radiation Weather Station. HEALTH PHYSICS SOCIETY . 2025 AFFILIATE MEMBERS. Policy Surveillance Methods Applied to NORM and TENORM Regulation in the Southeast United States. TENORM Regulation in the United States of America post-West Virginia vs. EPA. The Future of Radiation Protection Professionals: Spotlight on Students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1