Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts.

IF 4.1 3区 生物学 Q2 CELL BIOLOGY Microbial Cell Pub Date : 2024-08-02 eCollection Date: 2024-01-01 DOI:10.15698/mic2024.08.833
Lajos Acs-Szabo, Laszlo Attila Papp, Ida Miklos
{"title":"Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts.","authors":"Lajos Acs-Szabo, Laszlo Attila Papp, Ida Miklos","doi":"10.15698/mic2024.08.833","DOIUrl":null,"url":null,"abstract":"<p><p>The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (<i>Saccharomyces cerevisiae</i>) is the most popular model among yeasts, the contribution of the fission yeasts (<i>Schizosaccharomyces</i>) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast <i>Schizosaccharomyces japonicus</i>, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of <i>S. japonicus</i> as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2024.08.833","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解人类疾病的分子机制:裂殖酵母的益处。
酵母等模式生物在生命科学研究中的作用至关重要。虽然面包酵母(Saccharomyces cerevisiae)是酵母中最受欢迎的模式生物,但裂殖酵母(Schizosaccharomyces)对生命科学的贡献也是毋庸置疑的。由于这两种酵母与人类有数千个共同的同源基因,它们为研究许多基本的分子机制和功能提供了一个简单的研究平台,从而有助于了解人类疾病的背景。在这篇综述中,我们希望强调裂殖酵母相对于芽殖酵母的诸多优势。以裂殖酵母在病毒研究中的作用为例,介绍与人类免疫缺陷病毒 1 型(HIV-1)Vpr 蛋白相关的最重要研究成果。此外,还讨论了裂殖酵母在朊病毒生物学研究中的潜在作用。此外,我们还热衷于推广日本裂殖酵母(Schizosaccharomyces japonicus),它是裂殖酵母属中的一个二态种。我们建议将日本裂殖酵母的头状花序生长作为研究人类癌细胞侵染体的模型,因为这两种看似不同的细胞类型可以根据基本特征进行比较。在这里,我们还收集了裂变酵母的最新实验方案和生物信息学工具,以强调研究界可利用的多种可能性。此外,我们还介绍了大家在使用酵母模型时应该注意的几个限制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
期刊最新文献
Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis. Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? Direct detection of stringent alarmones (pp)pGpp using malachite green. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1