首页 > 最新文献

Microbial Cell最新文献

英文 中文
Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy. 微波辅助制备酵母细胞,以便用电子显微镜进行超微结构分析。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-11-18 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.11.840
Moritz Mayer, Christina Schug, Stefan Geimer, Till Klecker, Benedikt Westermann

Budding yeast Saccharomyces cerevisiae is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM). Preparation of yeast cells for TEM can be quite challenging and time-consuming. Here, we describe an optimized protocol for conventional fixation of yeast cells with potassium permanganate combined with cell wall permeabilization with sodium metaperiodate and embedding in Epon. We have replaced time-consuming incubation steps by short treatments with microwaves and developed a microwave-assisted permanganate fixation and Epon embedding protocol that reduces the time required for sample preparation to one working day. We expect that these protocols will be useful for routine analysis of membrane ultrastructure in yeast.

酵母芽孢杆菌(Saccharomyces cerevisiae)被广泛用作研究细胞器膜的生物生成和结构的模式生物。制备用于 TEM 的酵母细胞是一项相当具有挑战性且耗时的工作。在此,我们介绍了一种优化方案,即用高锰酸钾对酵母细胞进行常规固定,再用偏碘酸钠对细胞壁进行渗透,然后嵌入 Epon。我们用微波短时间处理取代了耗时的孵育步骤,并开发出一种微波辅助高锰酸盐固定和 Epon 包埋方案,将样品制备所需的时间缩短到一个工作日。我们希望这些方案能用于酵母膜超微结构的常规分析。
{"title":"Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy.","authors":"Moritz Mayer, Christina Schug, Stefan Geimer, Till Klecker, Benedikt Westermann","doi":"10.15698/mic2024.11.840","DOIUrl":"10.15698/mic2024.11.840","url":null,"abstract":"<p><p>Budding yeast <i>Saccharomyces cerevisiae</i> is widely used as a model organism to study the biogenesis and architecture of organellar membranes, which can be visualized by transmission electron microscopy (TEM). Preparation of yeast cells for TEM can be quite challenging and time-consuming. Here, we describe an optimized protocol for conventional fixation of yeast cells with potassium permanganate combined with cell wall permeabilization with sodium metaperiodate and embedding in Epon. We have replaced time-consuming incubation steps by short treatments with microwaves and developed a microwave-assisted permanganate fixation and Epon embedding protocol that reduces the time required for sample preparation to one working day. We expect that these protocols will be useful for routine analysis of membrane ultrastructure in yeast.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"378-386"},"PeriodicalIF":4.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms. 外排泵:金黄色葡萄球菌生物膜中抗生素耐药性的看门人。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-11-11 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.11.839
Shweta Sinha, Shifu Aggarwal, Durg Vijai Singh

Staphylococcus aureus, a versatile human pathogen, poses a significant challenge in healthcare settings due to its ability to develop antibiotic resistance and form robust biofilms. Understanding the intricate mechanisms underlying the antibiotic resistance is crucial for effective infection treatment and control. This comprehensive review delves into the multifaceted roles of efflux pumps in S. aureus, with a focus on their contribution to antibiotic resistance and biofilm formation. Efflux pumps, integral components of the bacterial cell membrane, are responsible for expelling a wide range of toxic substances, including antibiotics, from bacterial cells. By actively extruding antibiotics, these pumps reduce intracellular drug concentrations, rendering antibiotics less effective. Moreover, efflux pumps have emerged as significant contributors to both antibiotic resistance and biofilm formation in S. aureus. Biofilms, structured communities of bacterial cells embedded in a protective matrix, enable S. aureus to adhere to surfaces, evade host immune responses, and resist antibiotic therapy. Efflux pumps play a pivotal role in the development and maintenance of S. aureus biofilms. However, the interplay between efflux pumps, antibiotic resistance and biofilm formation remains unexplored in S. aureus. This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms. The insights provided herein may contribute to the advancement of novel strategies to overcome antibiotic resistance and disrupt biofilm formation in this clinically significant pathogen.

金黄色葡萄球菌是一种用途广泛的人类病原体,由于它能够产生抗生素耐药性并形成强大的生物膜,因此给医疗机构带来了巨大的挑战。了解抗生素耐药性的复杂机制对于有效治疗和控制感染至关重要。本综述深入探讨了外排泵在金黄色葡萄球菌中的多方面作用,重点关注它们对抗生素耐药性和生物膜形成的贡献。外排泵是细菌细胞膜的组成部分,负责将包括抗生素在内的多种有毒物质排出细菌细胞。通过主动挤出抗生素,这些泵可降低细胞内的药物浓度,从而降低抗生素的效力。此外,外排泵已成为金黄色葡萄球菌产生抗生素耐药性和形成生物膜的重要因素。生物膜是嵌入保护基质中的细菌细胞结构群落,能使金黄色葡萄球菌粘附于表面、逃避宿主免疫反应并抵抗抗生素治疗。外排泵在金黄色葡萄球菌生物膜的形成和维持过程中起着关键作用。然而,对于金黄色葡萄球菌来说,外排泵、抗生素耐药性和生物膜形成之间的相互作用仍有待探索。本综述旨在阐明金黄色葡萄球菌的外排泵、抗生素耐药性和生物膜形成之间的复杂关系,以帮助开发潜在的治疗靶点,对抗金黄色葡萄球菌感染,尤其是与生物膜相关的感染。本文所提供的见解可能有助于推进新型战略,以克服抗生素耐药性并破坏这种临床上重要病原体的生物膜形成。
{"title":"Efflux pumps: gatekeepers of antibiotic resistance in <i>Staphylococcus aureus</i> biofilms.","authors":"Shweta Sinha, Shifu Aggarwal, Durg Vijai Singh","doi":"10.15698/mic2024.11.839","DOIUrl":"10.15698/mic2024.11.839","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i>, a versatile human pathogen, poses a significant challenge in healthcare settings due to its ability to develop antibiotic resistance and form robust biofilms. Understanding the intricate mechanisms underlying the antibiotic resistance is crucial for effective infection treatment and control. This comprehensive review delves into the multifaceted roles of efflux pumps in <i>S. aureus</i>, with a focus on their contribution to antibiotic resistance and biofilm formation. Efflux pumps, integral components of the bacterial cell membrane, are responsible for expelling a wide range of toxic substances, including antibiotics, from bacterial cells. By actively extruding antibiotics, these pumps reduce intracellular drug concentrations, rendering antibiotics less effective. Moreover, efflux pumps have emerged as significant contributors to both antibiotic resistance and biofilm formation in <i>S. aureus</i>. Biofilms, structured communities of bacterial cells embedded in a protective matrix, enable <i>S. aureus</i> to adhere to surfaces, evade host immune responses, and resist antibiotic therapy. Efflux pumps play a pivotal role in the development and maintenance of <i>S. aureus</i> biofilms. However, the interplay between efflux pumps, antibiotic resistance and biofilm formation remains unexplored in <i>S. aureus</i>. This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in <i>S. aureus</i> with the aim to aid in the development of potential therapeutic targets for combating <i>S. aureus</i> infections, especially those associated with biofilms. The insights provided herein may contribute to the advancement of novel strategies to overcome antibiotic resistance and disrupt biofilm formation in this clinically significant pathogen.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"368-377"},"PeriodicalIF":4.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines. RSV/SARS-CoV-2共同感染的A549-hACE2表达细胞系的细胞平衡发生了复杂的重塑。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.10.838
Claudia Vanetti, Irma Saulle, Valentina Artusa, Claudia Moscheni, Gioia Cappelletti, Silvia Zecchini, Sergio Strizzi, Micaela Garziano, Claudio Fenizia, Antonella Tosoni, Martina Broggiato, Pasquale Ogno, Manuela Nebuloni, Mario Clerici, Daria Trabattoni, Fiona Limanaqi, Mara Biasin

Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an in vitro co-infection model to assess how RSV/SARS-CoV-2 co-infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS-CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.

两种或两种以上具有相似滋养特性的病原体(如 RSV 和 SARS-CoV-2)同时感染可能会相互拮抗或促进,从而影响疾病的预后。据临床报道,RSV/SARS-CoV-2 合并感染儿童的症状严重程度存在差异。在此,我们提出一种体外联合感染模型,以评估 RSV/SARS-CoV-2 联合感染如何改变细胞稳态。为此,A549-hACE2 表达细胞要么单独感染 RSV 或 SARS-CoV-2,要么同时感染两种病毒。感染后 72 小时,通过液滴数字 PCR、免疫荧光和透射电子显微镜对病毒复制进行评估。通过 RT-qPCR 评估了抗病毒/受体/自噬基因的表达,并通过分泌组分析和细胞内蛋白质的产生进行了确认。A549-hACE2细胞中RSV/SARS-CoV-2共感染的特点是1)与单一感染相比,RSV 的复制率增加;2)RSV 宿主受体之一 ICAM1 增加;3)促炎基因的表达/分泌上调;4)细胞导管的数量和长度增加;5)自噬体形成增加和/或自噬途径发生改变。这些研究结果表明,RSV/SARS-CoV-2 联合感染模型显示出独特和特异的病毒和分子指纹,并揭示了病毒感染致病过程中的病毒动态。这种体外联合感染模型可能是模拟病毒动态和宿主细胞反应的一种具有潜在吸引力和成本效益的方法,可在未来提供预测联合感染进展的可测量目标。
{"title":"A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines.","authors":"Claudia Vanetti, Irma Saulle, Valentina Artusa, Claudia Moscheni, Gioia Cappelletti, Silvia Zecchini, Sergio Strizzi, Micaela Garziano, Claudio Fenizia, Antonella Tosoni, Martina Broggiato, Pasquale Ogno, Manuela Nebuloni, Mario Clerici, Daria Trabattoni, Fiona Limanaqi, Mara Biasin","doi":"10.15698/mic2024.10.838","DOIUrl":"https://doi.org/10.15698/mic2024.10.838","url":null,"abstract":"<p><p>Concurrent infections with two or more pathogens with analogous tropism, such as RSV and SARS-CoV-2, may antagonize or facilitate each other, modulating disease outcome. Clinically, discrepancies in the severity of symptoms have been reported in children with RSV/SARS-CoV-2 co-infection. Herein, we propose an <i>in vitro</i> co-infection model to assess how RSV/SARS-CoV-2 co-infection alters cellular homeostasis. To this end, A549-hACE2 expressing cells were either infected with RSV or SARS-CoV-2 alone or co-infected with both viruses. Viral replication was assessed at 72 hours post infection by droplet digital PCR, immunofluorescence, and transmission electron microscopy. Anti-viral/receptor/autophagy gene expression was evaluated by RT-qPCR and confirmed by secretome analyses and intracellular protein production. RSV/SARS-CoV-2 co-infection in A549-hACE2 cells was characterized by: 1) an increase in the replication rate of RSV compared to single infection; 2) an increase in one of the RSV host receptors, ICAM1; 3) an upregulation in the expression/secretion of pro-inflammatory genes; 4) a rise in the number and length of cellular conduits; and 5) augmented autophagosomes formation and/or alteration of the autophagy pathway. These findings suggest that RSV/SARS-CoV-2 co-infection model displays a unique and specific viral and molecular fingerprint and shed light on the viral dynamics during viral infection pathogenesis. This in vitro co-infection model may represent a potential attractive cost-effective approach to mimic both viral dynamics and host cellular responses, providing in future readily measurable targets predictive of co-infection progression.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"353-367"},"PeriodicalIF":4.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis. RidA 蛋白通过降低 2AA 压力和调节异亮氨酸生物合成的通量,对肠杆菌属和大肠杆菌的适应性做出了贡献。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-04 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.10.837
Ronnie L Fulton, Bryce R Sawyer, Diana M Downs

Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. In vitro RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine - 2-aminoacrylate (2AA) and 2-aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of E. coli or S. enterica without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5'-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in S. enterica and E. coli. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.

确定基因产物的生理作用有赖于解释因缺乏或改变相应基因产物而导致的表型。关键基因的突变通常会导致容易识别的表型,包括细胞生长、新陈代谢、结构等方面的变化。然而,许多重要基因的突变可能不会产生明显的缺陷,除非介质或遗传背景造成额外的干扰。后一种情况以 RidA 蛋白为例。体外 RidA 蛋白对许多亚胺/烯胺进行脱氨基处理,包括由丝氨酸/苏氨酸脱水酶 IlvA(EC:4.3.1.19)从丝氨酸或苏氨酸生成的亚胺/烯胺--2-氨基丙烯酸酯(2AA)和 2-氨基巴豆酸酯(2AC)。尽管 RidA 具有这种明显的生化活性,但在没有额外代谢干扰的情况下,缺乏 RidA 对大肠杆菌或肠道病毒的生长几乎没有影响。RidA 在细胞中的作用是防止 2AA 的积累,如果 2AA 持续存在,就会对依赖于 5'-磷酸吡哆醛(PLP)的酶造成不可逆的损害,从而导致全面的代谢压力。由于缺乏 RidA 所导致的表型取决于每个代谢网络的独特结构,因此很难在某些生物体内证明 RidA 功能与 2AA 压力之间的联系。本研究利用共培养实验来加剧肠杆菌和大肠杆菌因缺乏 RidA 而导致的生长差异。这里描述的结果巩固了 RidA 在去除 2AA 中的既定作用,同时也提出了 RidA 在提高大肠杆菌异亮氨酸生物合成通量中的作用的证据。总之,这些数据强调了代谢网络可以对扰动产生不同的反应,即使单个成分是保守的。
{"title":"RidA proteins contribute to fitness of <i>S. enterica</i> and <i>E.</i> <i>coli</i> by reducing 2AA stress and moderating flux to isoleucine biosynthesis.","authors":"Ronnie L Fulton, Bryce R Sawyer, Diana M Downs","doi":"10.15698/mic2024.10.837","DOIUrl":"10.15698/mic2024.10.837","url":null,"abstract":"<p><p>Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. <i>In vitro</i> RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine - 2-aminoacrylate (2AA) and 2-aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of <i>E. coli</i> or <i>S. enterica</i> without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5'-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in <i>S. enterica</i> and <i>E. coli</i>. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in <i>E. coli</i>. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"339-352"},"PeriodicalIF":4.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis. 粪便明胶酶不能预测酒精相关性肝炎患者的死亡率。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-26 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.836
Yongqiang Yang, Phillipp Hartmann, Bernd Schnabl

Alcohol-associated liver disease is highly prevalent worldwide, with alcohol-associated hepatitis as a severe form characterized by substantial morbidity, mortality, and economic burden. Gut bacterial dysbiosis has been linked to progression of alcohol-associated hepatitis. Fecal cytolysin secreted by the pathobiont Enterococcus faecalis (E. faecalis) is associated with increased mortality in patients with alcohol-associated hepatitis. Although gelatinase is considered a virulence factor in E. faecalis, its prevalence and impact on alcohol-associated hepatitis patient outcomes remains unclear. In this study, 20 out of 65 (30.8%) patients with alcohol-associated hepatitis tested positive for gelatinase in their stool. There were no significant differences in 30-day and 90-day mortality between gelatinase-positive and gelatinase-negative patients (p=0.97 and p=0.48, respectively). Fecal gelatinase had a low discriminative ability for 30-day mortality (area under the curve [AUC] 0.50 vs fibrosis-4 Index (FIB-4) 0.75) and 90-day mortality compared with other established liver disease markers (AUC 0.57 vs FIB-4 0.79 or 'age, serum bilirubin, INR, and serum creatinine' (ABIC) score 0.78). Furthermore, fecal gelatinase was not an important feature for 30-day or 90-day mortality per random forest analysis. Finally, gelatinase-positive patients with alcohol-associated hepatitis did not exhibit more severe liver disease compared with gelatinase-negative patients. In conclusion, fecal gelatinase does not predict mortality or disease severity in patients with alcohol-associated hepatitis from our cohort.

酒精相关性肝病在全球范围内发病率很高,其中酒精相关性肝炎是一种严重的肝病,具有发病率高、死亡率高和经济负担重的特点。肠道细菌失调与酒精相关性肝炎的恶化有关。病原菌粪肠球菌(E. faecalis)分泌的粪便细胞溶解素与酒精相关性肝炎患者死亡率的增加有关。虽然明胶酶被认为是粪肠球菌的毒力因子,但其流行程度及其对酒精相关性肝炎患者预后的影响仍不清楚。在这项研究中,65 名酒精相关性肝炎患者中有 20 人(30.8%)的粪便中检测出明胶酶呈阳性。明胶酶阳性和明胶酶阴性患者的 30 天和 90 天死亡率无明显差异(分别为 p=0.97 和 p=0.48)。与其他已确定的肝病标志物相比,粪便明胶酶对 30 天死亡率(曲线下面积 [AUC] 0.50 vs 纤维化-4 指数 (FIB-4) 0.75)和 90 天死亡率(AUC 0.57 vs FIB-4 0.79 或 "年龄、血清胆红素、INR 和血清肌酐"(ABIC)评分 0.78)的判别能力较低。此外,根据随机森林分析,粪便明胶酶不是 30 天或 90 天死亡率的重要特征。最后,与明胶酶阴性的患者相比,明胶酶阳性的酒精相关性肝炎患者并没有表现出更严重的肝病。总之,粪便明胶酶不能预测我们队列中酒精相关性肝炎患者的死亡率或疾病严重程度。
{"title":"Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis.","authors":"Yongqiang Yang, Phillipp Hartmann, Bernd Schnabl","doi":"10.15698/mic2024.08.836","DOIUrl":"10.15698/mic2024.08.836","url":null,"abstract":"<p><p>Alcohol-associated liver disease is highly prevalent worldwide, with alcohol-associated hepatitis as a severe form characterized by substantial morbidity, mortality, and economic burden. Gut bacterial dysbiosis has been linked to progression of alcohol-associated hepatitis. Fecal cytolysin secreted by the pathobiont <i>Enterococcus faecalis</i> (<i>E. faecalis</i>) is associated with increased mortality in patients with alcohol-associated hepatitis. Although gelatinase is considered a virulence factor in <i>E. faecalis</i>, its prevalence and impact on alcohol-associated hepatitis patient outcomes remains unclear. In this study, 20 out of 65 (30.8%) patients with alcohol-associated hepatitis tested positive for gelatinase in their stool. There were no significant differences in 30-day and 90-day mortality between gelatinase-positive and gelatinase-negative patients (p=0.97 and p=0.48, respectively). Fecal gelatinase had a low discriminative ability for 30-day mortality (area under the curve [AUC] 0.50 vs fibrosis-4 Index (FIB-4) 0.75) and 90-day mortality compared with other established liver disease markers (AUC 0.57 vs FIB-4 0.79 or 'age, serum bilirubin, INR, and serum creatinine' (ABIC) score 0.78). Furthermore, fecal gelatinase was not an important feature for 30-day or 90-day mortality per random forest analysis. Finally, gelatinase-positive patients with alcohol-associated hepatitis did not exhibit more severe liver disease compared with gelatinase-negative patients. In conclusion, fecal gelatinase does not predict mortality or disease severity in patients with alcohol-associated hepatitis from our cohort.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"328-338"},"PeriodicalIF":4.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? 萌发酵母细胞周期中的蛋白质合成模式:可变还是恒定?
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.835
Eun-Gyu No, Heidi M Blank, Michael Polymenis

Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The 'bulk' protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.

蛋白质是增殖细胞的主要大分子成分,蛋白质合成被视为细胞生长的主要指标。虽然有著名的蛋白质水平在细胞周期中呈周期性变化的例子(如细胞周期蛋白),但人们认为大多数蛋白质的浓度在细胞周期中不会发生变化,但最近的一些研究结果对这一观点提出了挑战。本文的重点是芽殖酵母(Saccharomyces cerevisiae)中的 "大量 "蛋白质,特别是其合成速度。
{"title":"Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?","authors":"Eun-Gyu No, Heidi M Blank, Michael Polymenis","doi":"10.15698/mic2024.08.835","DOIUrl":"10.15698/mic2024.08.835","url":null,"abstract":"<p><p>Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The 'bulk' protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast <i>Saccharomyces cerevisiae</i>.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"321-327"},"PeriodicalIF":4.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct detection of stringent alarmones (pp)pGpp using malachite green. 利用孔雀石绿直接检测严格报警酮 (pp)ppGpp。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-05 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.834
Muriel Schicketanz, Magdalena Petrová, Dominik Rejman, Margherita Sosio, Stefano Donadio, Yong Everett Zhang

The alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed. In this study, we demonstrated that malachite green, a well-established compound used for phosphate detection, can directly detect (p)ppGpp and its analogues esp., pGpp. By utilizing malachite green, we identified three new inhibitors of the hydrolase activity of SpoT, one of the two RelA-SpoT homolog (RSH) proteins responsible for making and hydrolyzing (p)ppGpp in Escherichia coli. These findings highlight the convenience and practicality of malachite green, which can be widely employed in high-throughput studies to investigate (pp)pGpp in vitro and discover novel regulators of RSH proteins.

报警酮 (p)ppGpp 是细菌普遍严格反应的信号分子,在细菌的毒力、持久性和应激适应中发挥着至关重要的作用。因此,开发针对和调节 (p)ppGpp 水平的新药作为控制细菌感染的潜在策略受到了极大关注。然而,尽管有各种检测 (p)ppGpp 的方法,但仍需要一种简单直接的检测方法。在本研究中,我们证明了孔雀石绿这种用于磷酸盐检测的成熟化合物可以直接检测 (p)ppGpp 及其类似物,尤其是 pGpp。通过使用孔雀石绿,我们发现了三种新的 SpoT 水解酶活性抑制剂,SpoT 是大肠杆菌中负责制造和水解 (p)ppGpp 的两个 RelA-SpoT 同源物(RSH)蛋白之一。这些发现凸显了孔雀石绿的方便性和实用性,它可广泛应用于高通量研究,在体外研究 (pp)pGpp 并发现 RSH 蛋白的新型调控因子。
{"title":"Direct detection of stringent alarmones (pp)pGpp using malachite green.","authors":"Muriel Schicketanz, Magdalena Petrová, Dominik Rejman, Margherita Sosio, Stefano Donadio, Yong Everett Zhang","doi":"10.15698/mic2024.08.834","DOIUrl":"10.15698/mic2024.08.834","url":null,"abstract":"<p><p>The alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed. In this study, we demonstrated that malachite green, a well-established compound used for phosphate detection, can directly detect (p)ppGpp and its analogues esp., pGpp. By utilizing malachite green, we identified three new inhibitors of the hydrolase activity of SpoT, one of the two RelA-SpoT homolog (RSH) proteins responsible for making and hydrolyzing (p)ppGpp in <i>Escherichia coli</i>. These findings highlight the convenience and practicality of malachite green, which can be widely employed in high-throughput studies to investigate (pp)pGpp <i>in vitro</i> and discover novel regulators of RSH proteins.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"312-320"},"PeriodicalIF":4.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. 了解人类疾病的分子机制:裂殖酵母的益处。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-08-02 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.08.833
Lajos Acs-Szabo, Laszlo Attila Papp, Ida Miklos

The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.

酵母等模式生物在生命科学研究中的作用至关重要。虽然面包酵母(Saccharomyces cerevisiae)是酵母中最受欢迎的模式生物,但裂殖酵母(Schizosaccharomyces)对生命科学的贡献也是毋庸置疑的。由于这两种酵母与人类有数千个共同的同源基因,它们为研究许多基本的分子机制和功能提供了一个简单的研究平台,从而有助于了解人类疾病的背景。在这篇综述中,我们希望强调裂殖酵母相对于芽殖酵母的诸多优势。以裂殖酵母在病毒研究中的作用为例,介绍与人类免疫缺陷病毒 1 型(HIV-1)Vpr 蛋白相关的最重要研究成果。此外,还讨论了裂殖酵母在朊病毒生物学研究中的潜在作用。此外,我们还热衷于推广日本裂殖酵母(Schizosaccharomyces japonicus),它是裂殖酵母属中的一个二态种。我们建议将日本裂殖酵母的头状花序生长作为研究人类癌细胞侵染体的模型,因为这两种看似不同的细胞类型可以根据基本特征进行比较。在这里,我们还收集了裂变酵母的最新实验方案和生物信息学工具,以强调研究界可利用的多种可能性。此外,我们还介绍了大家在使用酵母模型时应该注意的几个限制因素。
{"title":"Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts.","authors":"Lajos Acs-Szabo, Laszlo Attila Papp, Ida Miklos","doi":"10.15698/mic2024.08.833","DOIUrl":"10.15698/mic2024.08.833","url":null,"abstract":"<p><p>The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (<i>Saccharomyces cerevisiae</i>) is the most popular model among yeasts, the contribution of the fission yeasts (<i>Schizosaccharomyces</i>) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast <i>Schizosaccharomyces japonicus</i>, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of <i>S. japonicus</i> as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"288-311"},"PeriodicalIF":4.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis. 活动性肺结核患者的启动子甲基化和 PD-L1 表达增加。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-29 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.832
Yen-Han Tseng, Sheng-Wei Pan, Jhong-Ru Huang, Chang-Ching Lee, Jung-Jyh Hung, Po-Kuei Hsu, Nien-Jung Chen, Wei-Juin Su, Yuh-Min Chen, Jia-Yih Feng

The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of Mycobacterium tuberculosis (MTB) infection. DNA methylation is a mechanism that modulates PD-L1 expression in cancer cells. However, its effect on PD-L1 expression in macrophages after MTB infection remains unknown. We prospectively enrolled patients with active tuberculosis (TB) and non-TB subjects. The expression of PD-L1 and methylation-related genes in peripheral blood mononuclear cells (PBMCs) were investigated and their correlation with disease severity and treatment outcomes were examined. PD-L1 promoter methylation status was evaluated using bisulfite sequencing. Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to visualize PD-L1- and TET-1-expressing cells in lung tissues from patients with TB and in macrophage cell lines with MTB-related stimulation. In total, 80 patients with active TB and 40 non-TB subjects were enrolled in the analysis. Patients with active TB had significantly higher expression of PD-L1, DNMT3b, TET1, TET2, and lower expression of DNMT1, compared to that in the non-TB subjects. The expression of PD-L1 and TET-1 was significantly associated with 1-month smear and culture non-conversion. IHC and IF staining demonstrated the co-localization of PD-L1- and TET-1-expressing macrophages in patients with pulmonary TB and in human macrophage cell lines after MTB-related stimulation. DNMT inhibition and TET-1 knockdown in human macrophages increased and decreased PD-L1 expression, respectively. Overall, PD-L1 expression is increased in patients with active TB and is correlated with treatment outcomes. DNA methylation is involved in modulating PD-L1 expression in human macrophages.

PD-1/PD-L1 通路在 T 细胞活性中起着关键作用,并参与结核分枝杆菌(MTB)感染的病理生理学。DNA 甲基化是调节癌细胞中 PD-L1 表达的一种机制。然而,DNA甲基化对MTB感染后巨噬细胞中PD-L1表达的影响仍然未知。我们前瞻性地招募了活动性肺结核(TB)患者和非肺结核受试者。我们调查了外周血单核细胞(PBMCs)中 PD-L1 和甲基化相关基因的表达,并研究了它们与疾病严重程度和治疗结果的相关性。采用亚硫酸氢盐测序法评估了 PD-L1 启动子甲基化状态。免疫组化(IHC)和免疫荧光(IF)染色用于观察肺结核患者肺组织和受 MTB 相关刺激的巨噬细胞系中表达 PD-L1 和 TET-1 的细胞。共有 80 名活动性肺结核患者和 40 名非肺结核患者参与了分析。与非肺结核受试者相比,活动性肺结核患者的 PD-L1、DNMT3b、TET1 和 TET2 的表达明显较高,而 DNMT1 的表达较低。PD-L1 和 TET-1 的表达与 1 个月涂片和培养未转阴有明显相关性。IHC 和 IF 染色显示,在肺结核患者体内和经 MTB 相关刺激后的人类巨噬细胞系中,PD-L1 和 TET-1 表达的巨噬细胞共定位。人类巨噬细胞中的 DNMT 抑制和 TET-1 敲除分别增加和减少了 PD-L1 的表达。总体而言,活动性肺结核患者的 PD-L1 表达增加,并与治疗效果相关。DNA 甲基化参与调节人类巨噬细胞中 PD-L1 的表达。
{"title":"Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis.","authors":"Yen-Han Tseng, Sheng-Wei Pan, Jhong-Ru Huang, Chang-Ching Lee, Jung-Jyh Hung, Po-Kuei Hsu, Nien-Jung Chen, Wei-Juin Su, Yuh-Min Chen, Jia-Yih Feng","doi":"10.15698/mic2024.07.832","DOIUrl":"10.15698/mic2024.07.832","url":null,"abstract":"<p><p>The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of <i>Mycobacterium tuberculosis</i> (MTB) infection. DNA methylation is a mechanism that modulates PD-L1 expression in cancer cells. However, its effect on PD-L1 expression in macrophages after MTB infection remains unknown. We prospectively enrolled patients with active tuberculosis (TB) and non-TB subjects. The expression of PD-L1 and methylation-related genes in peripheral blood mononuclear cells (PBMCs) were investigated and their correlation with disease severity and treatment outcomes were examined. PD-L1 promoter methylation status was evaluated using bisulfite sequencing. Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to visualize PD-L1- and TET-1-expressing cells in lung tissues from patients with TB and in macrophage cell lines with MTB-related stimulation. In total, 80 patients with active TB and 40 non-TB subjects were enrolled in the analysis. Patients with active TB had significantly higher expression of <i>PD-L1</i>, <i>DNMT3b</i>, <i>TET1</i>, <i>TET2</i>, and lower expression of <i>DNMT1</i>, compared to that in the non-TB subjects. The expression of <i>PD-L1</i> and <i>TET-1</i> was significantly associated with 1-month smear and culture non-conversion. IHC and IF staining demonstrated the co-localization of PD-L1- and TET-1-expressing macrophages in patients with pulmonary TB and in human macrophage cell lines after MTB-related stimulation. DNMT inhibition and <i>TET-1</i> knockdown in human macrophages increased and decreased <i>PD-L1</i> expression, respectively. Overall, <i>PD-L1</i> expression is increased in patients with active TB and is correlated with treatment outcomes. DNA methylation is involved in modulating <i>PD-L1</i> expression in human macrophages.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"278"},"PeriodicalIF":4.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification methods of Candida albicans are independent irrespective of fungal morphology. 无论真菌形态如何,白色念珠菌的定量方法都是独立的。
IF 4.1 3区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-07-26 eCollection Date: 2024-01-01 DOI: 10.15698/mic2024.07.831
Amanda B Soares, Maria C de Albuquerque, Leticia M Rosa, Marlise I Klein, Ana C Pavarina, Paula A Barbugli, Livia N Dovigo, Ewerton G de O Mima

The ability of Candida albicans to switch its morphology from yeast to filaments, known as polymorphism, may bias the methods used in microbial quantification. Here, we compared the quantification methods [cell/mL, colony forming units (CFU)/mL, and the number of nuclei estimated by viability polymerase chain reaction (vPCR)] of three strains of C. albicans (one reference strain and two clinical isolates) grown as yeast, filaments, and biofilms. Metabolic activity (XTT assay) was also used for biofilms. Comparisons between the methods were evaluated by agreement analyses [Intraclass and Concordance Correlation Coefficients (ICC and CCC, respectively) and Bland-Altman Plot] and Pearson Correlation (α = 0.05). Principal Component Analysis (PCA) was employed to visualize the similarities and differences between the methods. Results demonstrated a lack of agreement between all methods irrespective of fungal morphology/growth, even when a strong correlation was observed. Bland-Altman plot also demonstrated proportional bias between all methods for all morphologies/growth, except between CFU/mL X vPCR for yeasts and biofilms. For all morphologies, the correlation between the methods were strong, but without linear relationship between them, except for yeast where vPCR showed weak correlation with cells/mL and CFU/mL. XTT moderately correlated with CFU/mL and vPCR and weakly correlated with cells/mL. For all morphologies/growth, PCA showed that CFU/mL was similar to cells/mL and vPCR was distinct from them, but for biofilms vPCR became more similar to CFU/mL and cells/mL while XTT was the most distinct method. As conclusions, our investigation demonstrated that CFU/mL underestimated cells/mL, while vPCR overestimated both cells/mL and CFU/mL, and that the methods had poor agreement and lack of linear relationship, irrespective of C. albicans morphology/growth.1.

白色念珠菌具有从酵母到丝状菌的形态转换能力,即所谓的多态性,这可能会使微生物定量方法产生偏差。在此,我们比较了以酵母、菌丝和生物膜形式生长的三种白念珠菌菌株(一种参考菌株和两种临床分离菌株)的定量方法[细胞/毫升、菌落形成单位(CFU)/毫升,以及通过活力聚合酶链反应(vPCR)估算的细胞核数量]。代谢活性(XTT 检测法)也用于生物膜。通过一致性分析[类内相关系数(ICC)和一致性相关系数(CCC)]以及布兰德-阿尔特曼图(Bland-Altman Plot)]和皮尔逊相关性(α = 0.05)评估了不同方法之间的比较。采用主成分分析法(PCA)来直观地显示各种方法之间的异同。结果表明,无论真菌形态/生长情况如何,所有方法之间都缺乏一致性,即使观察到很强的相关性也是如此。除 CFU/mL X vPCR 检测酵母菌和生物膜外,Bland-Altman 图还显示了所有形态/生长情况下所有方法之间的比例偏差。对于所有形态,各种方法之间的相关性都很强,但它们之间没有线性关系,只有酵母菌的 vPCR 与细胞/毫升和 CFU/ 毫升之间的相关性较弱。XTT 与 CFU/mL 和 vPCR 呈中度相关,与细胞/mL 呈弱相关。对于所有形态/生长情况,PCA 显示 CFU/mL 与细胞/毫升相似,vPCR 与它们不同,但对于生物膜,vPCR 与 CFU/mL 和细胞/毫升更相似,而 XTT 是最不同的方法。作为结论,我们的研究表明,CFU/mL 低估了细胞/mL,而 vPCR 则高估了细胞/mL 和 CFU/mL,而且无论白僵菌的形态/生长情况如何,这两种方法的一致性都很差,缺乏线性关系。
{"title":"Quantification methods of <i><b>Candida albicans</b></i> are independent irrespective of fungal morphology.","authors":"Amanda B Soares, Maria C de Albuquerque, Leticia M Rosa, Marlise I Klein, Ana C Pavarina, Paula A Barbugli, Livia N Dovigo, Ewerton G de O Mima","doi":"10.15698/mic2024.07.831","DOIUrl":"10.15698/mic2024.07.831","url":null,"abstract":"<p><p>The ability of <i>Candida albicans</i> to switch its morphology from yeast to filaments, known as polymorphism, may bias the methods used in microbial quantification. Here, we compared the quantification methods [cell/mL, colony forming units (CFU)/mL, and the number of nuclei estimated by viability polymerase chain reaction (vPCR)] of three strains of <i>C. albicans</i> (one reference strain and two clinical isolates) grown as yeast, filaments, and biofilms. Metabolic activity (XTT assay) was also used for biofilms. Comparisons between the methods were evaluated by agreement analyses [Intraclass and Concordance Correlation Coefficients (ICC and CCC, respectively) and Bland-Altman Plot] and Pearson Correlation (α = 0.05). Principal Component Analysis (PCA) was employed to visualize the similarities and differences between the methods. Results demonstrated a lack of agreement between all methods irrespective of fungal morphology/growth, even when a strong correlation was observed. Bland-Altman plot also demonstrated proportional bias between all methods for all morphologies/growth, except between CFU/mL X vPCR for yeasts and biofilms. For all morphologies, the correlation between the methods were strong, but without linear relationship between them, except for yeast where vPCR showed weak correlation with cells/mL and CFU/mL. XTT moderately correlated with CFU/mL and vPCR and weakly correlated with cells/mL. For all morphologies/growth, PCA showed that CFU/mL was similar to cells/mL and vPCR was distinct from them, but for biofilms vPCR became more similar to CFU/mL and cells/mL while XTT was the most distinct method. As conclusions, our investigation demonstrated that CFU/mL underestimated cells/mL, while vPCR overestimated both cells/mL and CFU/mL, and that the methods had poor agreement and lack of linear relationship, irrespective of <i>C. albicans</i> morphology/growth.1.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"11 ","pages":"265-277"},"PeriodicalIF":4.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbial Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1