Insights into Bacillus zanthoxyli HS1-mediated systemic tolerance: multifunctional implications for enhanced plant tolerance to abiotic stresses.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2024-07-01 DOI:10.1111/ppl.14458
Anahita Barghi, Ho Won Jung
{"title":"Insights into Bacillus zanthoxyli HS1-mediated systemic tolerance: multifunctional implications for enhanced plant tolerance to abiotic stresses.","authors":"Anahita Barghi, Ho Won Jung","doi":"10.1111/ppl.14458","DOIUrl":null,"url":null,"abstract":"<p><p>Abiotic stresses significantly impact agricultural productivity and food security. Innovative strategies, including the use of plant-derived compounds and plant growth-promoting rhizobacteria (PGPR), are necessary to enhance plant resilience. This study delved into how Bacillus zanthoxyli HS1 (BzaHS1) and BzaHS1-derived volatile organic compounds (VOC) conferred systemic tolerance against salt and heat stresses in cabbage and cucumber plants. Direct application of a BzaHS1 strain or exposure of BzaHS1-derived VOC to cabbage and cucumber plants promoted seedling growth under stressed conditions. This induced systemic tolerance was associated with increased mRNA expression and enzymatic activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), or ascorbate peroxidase (EC 1.11.1.1), leading to a reduction in oxidative stress in cabbage and cucumber plants. Plants co-cultured with BzaHS1 and exposed to BzaHS1-derived VOC triggered the accumulation of callose and minimized stomatal opening in response to high salt and temperature stresses, respectively. In contrast, exogenous treatment of azelaic acid, a well-characterized plant defense primer, had no significant impact on the seedling growth of cabbage and cucumber plants grown under abiotic stress conditions. Taken together, BzaHS1 and its VOC show potential for enhancing plant tolerance responses to salt and heat stresses through modulation of osmotic stress-regulatory networks.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14458","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abiotic stresses significantly impact agricultural productivity and food security. Innovative strategies, including the use of plant-derived compounds and plant growth-promoting rhizobacteria (PGPR), are necessary to enhance plant resilience. This study delved into how Bacillus zanthoxyli HS1 (BzaHS1) and BzaHS1-derived volatile organic compounds (VOC) conferred systemic tolerance against salt and heat stresses in cabbage and cucumber plants. Direct application of a BzaHS1 strain or exposure of BzaHS1-derived VOC to cabbage and cucumber plants promoted seedling growth under stressed conditions. This induced systemic tolerance was associated with increased mRNA expression and enzymatic activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), or ascorbate peroxidase (EC 1.11.1.1), leading to a reduction in oxidative stress in cabbage and cucumber plants. Plants co-cultured with BzaHS1 and exposed to BzaHS1-derived VOC triggered the accumulation of callose and minimized stomatal opening in response to high salt and temperature stresses, respectively. In contrast, exogenous treatment of azelaic acid, a well-characterized plant defense primer, had no significant impact on the seedling growth of cabbage and cucumber plants grown under abiotic stress conditions. Taken together, BzaHS1 and its VOC show potential for enhancing plant tolerance responses to salt and heat stresses through modulation of osmotic stress-regulatory networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对黄腐酸芽孢杆菌 HS1 介导的系统耐受性的深入研究:对增强植物耐受非生物胁迫的多功能影响。
非生物胁迫严重影响农业生产率和粮食安全。要提高植物的抗逆性,就必须采取创新策略,包括使用植物源化合物和植物生长促进根瘤菌(PGPR)。本研究深入探讨了枯草芽孢杆菌 HS1(BzaHS1)和 BzaHS1 衍生的挥发性有机化合物(VOC)如何赋予卷心菜和黄瓜植物对盐和热胁迫的系统耐受性。白菜和黄瓜植株直接施用 BzaHS1 菌株或接触 BzaHS1 衍生的挥发性有机化合物可促进幼苗在胁迫条件下的生长。这种诱导的系统耐受性与超氧化物歧化酶(EC 1.15.1.1)、过氧化氢酶(EC 1.11.1.6)或抗坏血酸过氧化物酶(EC 1.11.1.1)的 mRNA 表达和酶活性的增加有关,从而导致卷心菜和黄瓜植株的氧化应激减少。与 BzaHS1 共同培养的植物暴露于 BzaHS1 衍生的挥发性有机化合物后,会引发胼胝质的积累,并在应对高盐和高温胁迫时将气孔开放程度降至最低。相比之下,外源处理的壬二酸(一种特征明显的植物防御引物)对在非生物胁迫条件下生长的白菜和黄瓜植株的幼苗生长没有显著影响。综上所述,BzaHS1 及其 VOC 具有通过调节渗透胁迫调控网络增强植物对盐胁迫和热胁迫耐受性反应的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Changes in leaf lifespan, nitrogen resorption, and mean residence time of leaf nitrogen along a soil fertility gradient in an evergreen oak tree Multi‐omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa ‘Xinjiang‐Daye’) Genome‐wide association analysis identifies candidates of three bulb traits in garlic Withania somnifera osmotin (WsOsm) confers stress tolerance in tobacco and establishes novel interactions with the defensin protein (WsDF) Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1