首页 > 最新文献

Physiologia plantarum最新文献

英文 中文
Melatonin application enhances salt stress-induced decreases in minerals, betalains, and phenolic acids in beet (Beta vulgaris L.) cultivars. 施用褪黑激素可增强盐胁迫引起的甜菜(Beta vulgaris L.)栽培品种矿物质、甜菜醛和酚酸的减少。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14611
Nesrin Colak, Ana Slatnar, Aljaz Medic, Hülya Torun, Aynur Kurt-Celebi, Gerald Dräger, Jasmin Djahandideh, Tuba Esatbeyoglu, Faik Ahmet Ayaz

Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. 'Ruby Queen' and 'Scarlet Supreme') and white beet ('Rodeo' and 'Ansa') cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na+ concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K+ and Ca2+ concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na+, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.

褪黑激素是一种潜在的活性信号分子,在胁迫条件下调节植物的生长和发育、减轻氧化损伤、增强抗氧化防御机制和调节离子平衡方面起着至关重要的作用。本研究考察了在 50、150 和 250 mM NaCl 盐度条件下,外源褪黑激素对红甜菜(Beta vulgaris L. 'Ruby Queen' 和 'Scarlet Supreme')和白甜菜('Rodeo' 和 'Ansa')叶片生物量、离子浓度、甜菜碱、酚酸和内源褪黑激素含量的影响。外源褪黑激素增加了盐度引起的叶片鲜重、干重和渗透势的降低。随着盐度的升高,Na+浓度明显升高,但K+和Ca2+浓度则出现了因品种而异的下降。此外,施用褪黑素还能改善盐胁迫引起的甜菜素、甜菜苷和新甜菜素含量。此外,施用褪黑激素会导致盐胁迫和特定栽培品种的酚酸含量发生变化,如阿魏酸、山奈酸或间香豆素,其形式包括可溶性游离酚酸、酯苷结合酚酸和细胞壁结合酚酸。此外,甜菜中的抗氧化酶活性和化合物含量显著增加,并在盐胁迫+褪黑激素处理后以特定栽培品种的方式降低。目前的研究结果表明,外源褪黑素可抑制活性氧水平,提高抗氧化酶活性和化合物含量,降低 Na+ 水平,维持所选红甜菜和白甜菜品种的离子平衡,从而提高植物的胁迫耐受性。由此看来,施用褪黑素可提高甜菜的离子平衡、甜菜苷和酚酸生产水平,从而有助于提高特定栽培品种的耐盐性。
{"title":"Melatonin application enhances salt stress-induced decreases in minerals, betalains, and phenolic acids in beet (Beta vulgaris L.) cultivars.","authors":"Nesrin Colak, Ana Slatnar, Aljaz Medic, Hülya Torun, Aynur Kurt-Celebi, Gerald Dräger, Jasmin Djahandideh, Tuba Esatbeyoglu, Faik Ahmet Ayaz","doi":"10.1111/ppl.14611","DOIUrl":"https://doi.org/10.1111/ppl.14611","url":null,"abstract":"<p><p>Melatonin is a potentially active signaling molecule and plays a crucial role in regulating the growth and development of plants under stress conditions, alleviating oxidative damage, enhancing antioxidant defence mechanisms and regulating ion homeostasis. This study examined the effects of exogenous melatonin application on leaf biomass, ion concentrations, betalains, phenolic acid and endogenous melatonin contents comparing red beet (Beta vulgaris L. 'Ruby Queen' and 'Scarlet Supreme') and white beet ('Rodeo' and 'Ansa') cultivars under increasing salinity levels of 50, 150, and 250 mM NaCl. Exogenous melatonin increased salinity-induced reductions in fresh and dry weights and osmotic potential in leaves. Na<sup>+</sup> concentrations rose significantly with increasing salinity, but cultivar-specific decreases were observed in K<sup>+</sup> and Ca<sup>2+</sup> concentrations. Additionally, melatonin application improved betalain, betanin and neobetanin contents induced by salt stress. Furthermore, melatonin application caused salt stress and cultivar-specific changes in phenolic acid contents e.g., ferulic acid, sinapic acid, or m-coumaric acid, in soluble free, ester- and glycoside-conjugated and cell wall-bound forms. In addition, antioxidant enzyme activities and compound contents increased significantly in the beets and were subsequently lowered in a cultivar-specific manner by salt stress + melatonin treatment. The current findings indicate that exogenous melatonin improved plant stress tolerance suppressing reactive oxygen species levels, increasing the antioxidant enzyme activities and compound contents and reducing the levels of Na<sup>+</sup>, maintaining an ionic homeostasis in the selected red and white sugar beet cultivars. It appears that melatonin application may help improve cultivar-specific salt tolerance by enhancing ion homeostasis and betalain and phenolic acid production levels in beets.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14611"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel inhibitors of plant GH3 IAA-amido synthetases through molecular docking studies. 通过分子对接研究鉴定植物 GH3 IAA-氨基合成酶的新型抑制剂。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14612
Adrián Luque, Clara Blanes-Mira, Lara Caballero, Purificación Andrea Martínez-Melgarejo, Miriam Nicolás-Albujer, Francisco Pérez-Alfocea, Gregorio Fernández-Ballester, José Manuel Pérez-Pérez

Auxins play a critical role in several plant developmental processes and their endogenous levels are regulated at multiple levels. The enzymes of the GRETCHEN HAGEN 3 (GH3) protein family catalyze the conjugation of amino acids to indoleacetic acid (IAA), the major endogenous auxin. The GH3 proteins are encoded by multiple redundant genes in plant genomes, making it difficult to perform functional genetic studies to understand their role in auxin homeostasis. To address these challenges, we used a chemical approach that exploits the reaction mechanism of GH3 proteins to identify small molecule inhibitors of their activity from a defined chemical library. The study evaluated receptor-ligand complexes based on their binding energy and classified them accordingly. Docking algorithms were used to correct any deviations, resulting in a list of the most important inhibitory compounds for selected GH3 enzymes based on a normalized sum of energy. The study presents atomic details of protein-ligand interactions and quantifies the effect of several of the identified small molecule inhibitors on auxin-mediated root growth processes in Arabidopsis thaliana. The direct effect of these compounds on endogenous auxin levels was measured using appropriate auxin sensors and endogenous hormone measurements. Our study has identified novel compounds of the flavonoid biosynthetic pathway that are effective inhibitors of GH3 enzyme-mediated IAA conjugation. These compounds play a versatile role in hormone-regulated plant development and have potential applications in both basic research and agriculture.

辅酶在多种植物发育过程中发挥着关键作用,其内源水平受到多层次的调控。GRETCHEN HAGEN 3(GH3)蛋白家族的酶催化氨基酸与吲哚乙酸(IAA)(主要的内源辅助素)的共轭。GH3 蛋白在植物基因组中由多个冗余基因编码,因此很难进行功能基因研究以了解它们在辅助素平衡中的作用。为了应对这些挑战,我们采用了一种化学方法,利用 GH3 蛋白的反应机制,从一个确定的化学库中找出抑制其活性的小分子抑制剂。该研究根据受体与配体的结合能评估了受体与配体的复合物,并对它们进行了相应的分类。利用对接算法纠正任何偏差,最终根据能量的归一化总和,列出了对选定的 GH3 酶具有最重要抑制作用的化合物清单。该研究介绍了蛋白质-配体相互作用的原子细节,并量化了几种已确定的小分子抑制剂对拟南芥中辅酶介导的根生长过程的影响。这些化合物对内源植物生长素水平的直接影响是通过适当的植物生长素传感器和内源激素测量仪测得的。我们的研究发现了黄酮类生物合成途径中的新型化合物,它们是 GH3 酶介导的 IAA 共轭的有效抑制剂。这些化合物在激素调控的植物发育过程中发挥着多方面的作用,在基础研究和农业方面都有潜在的应用前景。
{"title":"Identification of novel inhibitors of plant GH3 IAA-amido synthetases through molecular docking studies.","authors":"Adrián Luque, Clara Blanes-Mira, Lara Caballero, Purificación Andrea Martínez-Melgarejo, Miriam Nicolás-Albujer, Francisco Pérez-Alfocea, Gregorio Fernández-Ballester, José Manuel Pérez-Pérez","doi":"10.1111/ppl.14612","DOIUrl":"https://doi.org/10.1111/ppl.14612","url":null,"abstract":"<p><p>Auxins play a critical role in several plant developmental processes and their endogenous levels are regulated at multiple levels. The enzymes of the GRETCHEN HAGEN 3 (GH3) protein family catalyze the conjugation of amino acids to indoleacetic acid (IAA), the major endogenous auxin. The GH3 proteins are encoded by multiple redundant genes in plant genomes, making it difficult to perform functional genetic studies to understand their role in auxin homeostasis. To address these challenges, we used a chemical approach that exploits the reaction mechanism of GH3 proteins to identify small molecule inhibitors of their activity from a defined chemical library. The study evaluated receptor-ligand complexes based on their binding energy and classified them accordingly. Docking algorithms were used to correct any deviations, resulting in a list of the most important inhibitory compounds for selected GH3 enzymes based on a normalized sum of energy. The study presents atomic details of protein-ligand interactions and quantifies the effect of several of the identified small molecule inhibitors on auxin-mediated root growth processes in Arabidopsis thaliana. The direct effect of these compounds on endogenous auxin levels was measured using appropriate auxin sensors and endogenous hormone measurements. Our study has identified novel compounds of the flavonoid biosynthetic pathway that are effective inhibitors of GH3 enzyme-mediated IAA conjugation. These compounds play a versatile role in hormone-regulated plant development and have potential applications in both basic research and agriculture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14612"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological and transcriptomic characterization of cold acclimation in endodormant grapevine under different temperature regimes. 不同温度条件下休眠期葡萄树适应寒冷的生理和转录组学特征。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14607
Hongrui Wang, Al P Kovaleski, Jason P Londo

It is essential for the survival of grapevines in cool climate viticultural regions where vines properly acclimate in late fall and early winter and develop freezing tolerance. Climate change-associated abnormities in temperature during the dormant season, including oscillations between prolonged warmth in late fall and extreme cold in midwinter, impact cold acclimation and threaten the sustainability of the grape and wine industry. We conducted two experiments in controlled environment to investigate the impacts of different temperature regimes on cold acclimation ability in endodormant grapevine buds through a combination of freezing tolerance-based physiological and RNA-seq-based transcriptomic monitoring. Results show that exposure to a constant temperature, whether warm (22 and 11°C), moderate (7°C), or cool (4 and 2°C) was insufficient for triggering cold acclimation and increasing freezing tolerance in dormant buds. However, when the same buds were exposed to temperature cycling (7±5°C), acclimation occurred, and freezing tolerance was increased by 5°C. We characterized the transcriptomic response of endodormant buds to high and low temperatures and temperature cycling and identified new potential roles for the ethylene pathway, starch and sugar metabolism, phenylpropanoid regulation, and protein metabolism in the genetic control of endodormancy maintenance. Despite clear evidence of temperature-responsive transcription in endodormant buds, our current understanding of the genetic control of cold acclimation remains a challenge when generalizing across grapevine tissues and phenological stages.

在气候凉爽的葡萄栽培地区,葡萄藤在秋末冬初适当适应寒冷并发展耐寒能力,这对葡萄藤的生存至关重要。与气候变化相关的休眠期温度异常,包括秋末的长期温暖和隆冬的极端寒冷之间的振荡,影响了冷适应,威胁着葡萄和葡萄酒产业的可持续性。我们在受控环境中进行了两项实验,通过结合基于耐冻性的生理监测和基于 RNA-seq 的转录组监测,研究不同温度机制对休眠期内葡萄芽的冷适应能力的影响。结果表明,暴露在恒定温度下,无论是温暖(22 和 11°C)、温和(7°C)还是低温(4 和 2°C),都不足以引发休眠芽的冷适应和提高耐冻性。然而,当相同的芽暴露于温度循环(7±5°C)中时,就会发生适应,耐寒性也会提高 5°C。我们描述了内休眠芽对高温、低温和温度循环的转录组反应,并确定了乙烯途径、淀粉和糖代谢、苯丙醇调节和蛋白质代谢在维持内休眠的遗传控制中的新的潜在作用。尽管有明确的证据表明内休眠芽中存在温度响应转录,但我们目前对冷适应遗传控制的了解仍是一个挑战,因为它涉及葡萄各组织和各物候期。
{"title":"Physiological and transcriptomic characterization of cold acclimation in endodormant grapevine under different temperature regimes.","authors":"Hongrui Wang, Al P Kovaleski, Jason P Londo","doi":"10.1111/ppl.14607","DOIUrl":"https://doi.org/10.1111/ppl.14607","url":null,"abstract":"<p><p>It is essential for the survival of grapevines in cool climate viticultural regions where vines properly acclimate in late fall and early winter and develop freezing tolerance. Climate change-associated abnormities in temperature during the dormant season, including oscillations between prolonged warmth in late fall and extreme cold in midwinter, impact cold acclimation and threaten the sustainability of the grape and wine industry. We conducted two experiments in controlled environment to investigate the impacts of different temperature regimes on cold acclimation ability in endodormant grapevine buds through a combination of freezing tolerance-based physiological and RNA-seq-based transcriptomic monitoring. Results show that exposure to a constant temperature, whether warm (22 and 11°C), moderate (7°C), or cool (4 and 2°C) was insufficient for triggering cold acclimation and increasing freezing tolerance in dormant buds. However, when the same buds were exposed to temperature cycling (7±5°C), acclimation occurred, and freezing tolerance was increased by 5°C. We characterized the transcriptomic response of endodormant buds to high and low temperatures and temperature cycling and identified new potential roles for the ethylene pathway, starch and sugar metabolism, phenylpropanoid regulation, and protein metabolism in the genetic control of endodormancy maintenance. Despite clear evidence of temperature-responsive transcription in endodormant buds, our current understanding of the genetic control of cold acclimation remains a challenge when generalizing across grapevine tissues and phenological stages.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14607"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution gene expression atlases of two contrasting major Greek olive (Olea europaea L.) tree cultivars for oil and table olive production. 希腊油橄榄(Olea europaea L.)两个主要栽培品种的高分辨率基因表达图谱。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14600
Georgios Lagiotis, Ioanna Karamichali, Maria Astrinaki, Androniki C Bibi, Despoina Vassou, Georgia-Maria Nteve, Anastasios Kollias, Ioanna Manolikaki, Christina Skodra, Michail Michailidis, Maria Manioudaki, Marios Iakovidis, Ioannis Ganopoulos, Georgios Koubouris, Athanassios Molassiotis, Christos Bazakos, Dimitris Kafetzopoulos, Panagiotis Madesis

Description of aims and systems used: Olive (Olea europea L.) is one of the most economically important tree crops worldwide, especially for the countries in the Mediterranean basin. Given the economic and nutritional importance of the crop for olive oil and drupe production, we generated transcriptional atlases for the Greek olive cultivars "Chondrolia Chalkidikis" and "Koroneiki" which have contrasting characteristics in terms of fruit development, oil production properties, and use. Our analysis involved 14 different organs, tissue types, and developmental stages, including young and mature leaves, young and mature shoots, open and closed flowers, young and mature fruits (epicarp plus mesocarp), young and mature endocarps, stalks, as well as roots. The developed gene expression atlases and the associated resources offer a comprehensive insight into comparative gene expression patterns across several organs and tissue types between significant olive tree cultivars. The comparative analyses presented in this work between the "Koroneiki" cultivar, which performs better in olive oil production, and the "Chondrolia Chalkidikis," which grows larger fruits, will be essential for understanding the molecular mechanisms underlying olive oil production and fruit shape and size development. The developed resource is also expected to support functional genomics and molecular breeding efforts to enhance crop quality and productivity in olive trees.

Outline of data resources generated: The transcriptome data were generated using paired-end Illumina Next-Generation Sequencing technologies. The sequencing yielded approximately 13 million reads per sample for "Chondrolia Chalkidikis" and around 24 million reads per sample for "Koroneiki." The transcriptomes were comparatively analyzed to reveal tissue-specific and differentially expressed genes and co-expression gene modules within and between cultivars.

Summary of key results: The comparative analysis unveiled tissue-specific and differentially expressed genes within and between cultivars. Hierarchical gene clustering revealed intra- and inter-cultivar expression patterns, particularly for the endocarp and fruit tissues relevant to olive oil production and fruit development. Additionally, genes associated with oil production and fruit size/shape development, including those in fatty acid metabolism and developmental regulation, were identified.

Broader utility of the resource: To facilitate accessibility, the GrOlivedb (www.GrOlivedb.com) database was developed, housing the comprehensive transcriptomic data for all of the analyzed organs and tissue types per cultivar. This resource will be a useful molecular tool for future breeding studies in olive oil production and fruit development and a valuable resource for crop improvement.

目标和所用系统说明:橄榄(Olea europea L.)是世界上最重要的经济林作物之一,尤其是对地中海盆地国家而言。鉴于橄榄油和核果生产对经济和营养的重要性,我们为希腊橄榄栽培品种 "Chondrolia Chalkidikis "和 "Koroneiki "生成了转录图谱,这两个品种在果实发育、产油特性和用途方面具有截然不同的特点。我们的分析涉及 14 种不同的器官、组织类型和发育阶段,包括幼叶和成熟叶、幼枝和成熟枝、开放花和闭合花、幼果和成熟果(外果皮和中果皮)、幼果和成熟内果皮、茎秆以及根。所开发的基因表达图谱和相关资源能让人全面了解重要橄榄树栽培品种之间多个器官和组织类型的基因表达模式比较。本研究对橄榄油产量较高的 "Koroneiki "栽培品种和果实较大的 "Chondrolia Chalkidikis "栽培品种进行了比较分析,这对了解橄榄油产量和果实形状与大小发育的分子机制至关重要。所开发的资源还有望支持功能基因组学和分子育种工作,以提高橄榄树的作物质量和产量:转录组数据是利用成对端 Illumina 下一代测序技术生成的。Chondrolia Chalkidikis "和 "Koroneiki "的测序结果分别为每个样本约 1300 万个和 2400 万个读数。对转录组进行了比较分析,以揭示栽培品种内部和之间的组织特异性和差异表达基因以及共表达基因模块:比较分析揭示了栽培品种内部和之间的组织特异性和差异表达基因。分层基因聚类揭示了栽培品种内和栽培品种间的表达模式,特别是与橄榄油生产和果实发育相关的内果皮和果实组织。此外,还发现了与橄榄油生产和果实大小/形状发育相关的基因,包括脂肪酸代谢和发育调控方面的基因:为便于访问,开发了 GrOlivedb(www.GrOlivedb.com)数据库,其中包含每个栽培品种所有分析器官和组织类型的综合转录组数据。该资源将成为未来橄榄油生产和果实发育育种研究的有用分子工具,也是作物改良的宝贵资源。
{"title":"High-resolution gene expression atlases of two contrasting major Greek olive (Olea europaea L.) tree cultivars for oil and table olive production.","authors":"Georgios Lagiotis, Ioanna Karamichali, Maria Astrinaki, Androniki C Bibi, Despoina Vassou, Georgia-Maria Nteve, Anastasios Kollias, Ioanna Manolikaki, Christina Skodra, Michail Michailidis, Maria Manioudaki, Marios Iakovidis, Ioannis Ganopoulos, Georgios Koubouris, Athanassios Molassiotis, Christos Bazakos, Dimitris Kafetzopoulos, Panagiotis Madesis","doi":"10.1111/ppl.14600","DOIUrl":"https://doi.org/10.1111/ppl.14600","url":null,"abstract":"<p><strong>Description of aims and systems used: </strong>Olive (Olea europea L.) is one of the most economically important tree crops worldwide, especially for the countries in the Mediterranean basin. Given the economic and nutritional importance of the crop for olive oil and drupe production, we generated transcriptional atlases for the Greek olive cultivars \"Chondrolia Chalkidikis\" and \"Koroneiki\" which have contrasting characteristics in terms of fruit development, oil production properties, and use. Our analysis involved 14 different organs, tissue types, and developmental stages, including young and mature leaves, young and mature shoots, open and closed flowers, young and mature fruits (epicarp plus mesocarp), young and mature endocarps, stalks, as well as roots. The developed gene expression atlases and the associated resources offer a comprehensive insight into comparative gene expression patterns across several organs and tissue types between significant olive tree cultivars. The comparative analyses presented in this work between the \"Koroneiki\" cultivar, which performs better in olive oil production, and the \"Chondrolia Chalkidikis,\" which grows larger fruits, will be essential for understanding the molecular mechanisms underlying olive oil production and fruit shape and size development. The developed resource is also expected to support functional genomics and molecular breeding efforts to enhance crop quality and productivity in olive trees.</p><p><strong>Outline of data resources generated: </strong>The transcriptome data were generated using paired-end Illumina Next-Generation Sequencing technologies. The sequencing yielded approximately 13 million reads per sample for \"Chondrolia Chalkidikis\" and around 24 million reads per sample for \"Koroneiki.\" The transcriptomes were comparatively analyzed to reveal tissue-specific and differentially expressed genes and co-expression gene modules within and between cultivars.</p><p><strong>Summary of key results: </strong>The comparative analysis unveiled tissue-specific and differentially expressed genes within and between cultivars. Hierarchical gene clustering revealed intra- and inter-cultivar expression patterns, particularly for the endocarp and fruit tissues relevant to olive oil production and fruit development. Additionally, genes associated with oil production and fruit size/shape development, including those in fatty acid metabolism and developmental regulation, were identified.</p><p><strong>Broader utility of the resource: </strong>To facilitate accessibility, the GrOlivedb (www.GrOlivedb.com) database was developed, housing the comprehensive transcriptomic data for all of the analyzed organs and tissue types per cultivar. This resource will be a useful molecular tool for future breeding studies in olive oil production and fruit development and a valuable resource for crop improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14600"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dehydration tolerance rather than avoidance explains drought resistance in zoysiagrass. 耐脱水而非避脱水解释了紫花苜蓿的抗旱性。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14622
Emma Simpson, Eduardo J Haverroth, Matthew Taggart, Moab T Andrade, Daniel A Villegas, Esdras M Carbajal, Leonardo A Oliveira, David Suchoff, Susana Milla-Lewis, Amanda A Cardoso

Irrigation of grasses dominates domestic water use across the globe, and better understanding of water use and drought resistance in grasses is of undeniable importance for water conservation. Breeding programs have released cultivars with improved drought resistance, but the underlying mechanisms remain unknown. We sought to characterize the mechanisms driving drought resistance in four zoysiagrass cultivars (Lobo, Zeon, Empire, and Meyer) reported to exhibit contrasting levels of drought resistance. A dry-down was performed through deficit irrigation until 70% decline in evapotranspiration. All cultivars exhibited similar drought avoidance as they dehydrated similarly throughout the drought. Lobo and Zeon, however, exhibited a 70% decline in evapotranspiration two to three days after Empire and Meyer, thus experiencing lower water potentials. Regarding drought tolerance, Lobo and Zeon maintained higher normalized difference vegetation index (NDVI) and lower perceived canopy mortality at higher dehydration levels than Empire and Meyer. We use "perceived" because visual assessments of canopy mortality are influenced by drought-induced leaf rolling. During the recovery, leaves rehydrated and unrolled, so the "actual" canopy mortality could be evaluated. All cultivars exhibited similar mortality on the first recovery day despite Lobo and Zeon experiencing more severe dehydration. Throughout the recovery, Lobo and Empire exhibited faster re-growth and showed the lowest canopy mortality, and Lobo exhibited the highest NDVI. The improved drought resistance of Lobo and Zeon results from greater dehydration tolerance rather than avoidance. This study has implications for lawn owners selecting the best cultivars and for breeding programs aiming at improving drought resistance of zoysiagrasses.

禾本科植物的灌溉在全球生活用水中占主导地位,更好地了解禾本科植物的用水和抗旱性对节水的重要性毋庸置疑。育种计划已培育出抗旱性更强的品种,但其潜在机制仍不清楚。据报道,四个紫草品种(Lobo、Zeon、Empire 和 Meyer)表现出了截然不同的抗旱性,我们试图研究这四个品种的抗旱性机理。通过亏缺灌溉进行降旱,直到蒸散量下降 70%。所有栽培品种都表现出相似的抗旱性,因为它们在整个干旱期间的脱水情况相似。但 Lobo 和 Zeon 的蒸散量在 Empire 和 Meyer 之后两到三天下降了 70%,因此水势较低。在耐旱性方面,与 Empire 和 Meyer 相比,Lobo 和 Zeon 在较高的脱水水平下仍能保持较高的归一化差异植被指数(NDVI)和较低的感知冠层死亡率。我们使用 "感知 "一词,是因为树冠死亡率的目测评估受到干旱引起的叶片卷曲的影响。在恢复期间,叶片恢复水分并展开,因此可以评估 "实际 "冠层死亡率。尽管 Lobo 和 Zeon 的脱水更为严重,但所有栽培品种在恢复的第一天都表现出了相似的死亡率。在整个恢复过程中,Lobo 和 Empire 的重新生长速度更快,冠层死亡率最低,Lobo 的 NDVI 最高。Lobo 和 Zeon 抗旱性的提高源于其更强的耐脱水能力,而不是避免脱水。这项研究对草坪所有者选择最佳栽培品种以及旨在提高紫草抗旱性的育种计划具有重要意义。
{"title":"Dehydration tolerance rather than avoidance explains drought resistance in zoysiagrass.","authors":"Emma Simpson, Eduardo J Haverroth, Matthew Taggart, Moab T Andrade, Daniel A Villegas, Esdras M Carbajal, Leonardo A Oliveira, David Suchoff, Susana Milla-Lewis, Amanda A Cardoso","doi":"10.1111/ppl.14622","DOIUrl":"10.1111/ppl.14622","url":null,"abstract":"<p><p>Irrigation of grasses dominates domestic water use across the globe, and better understanding of water use and drought resistance in grasses is of undeniable importance for water conservation. Breeding programs have released cultivars with improved drought resistance, but the underlying mechanisms remain unknown. We sought to characterize the mechanisms driving drought resistance in four zoysiagrass cultivars (Lobo, Zeon, Empire, and Meyer) reported to exhibit contrasting levels of drought resistance. A dry-down was performed through deficit irrigation until 70% decline in evapotranspiration. All cultivars exhibited similar drought avoidance as they dehydrated similarly throughout the drought. Lobo and Zeon, however, exhibited a 70% decline in evapotranspiration two to three days after Empire and Meyer, thus experiencing lower water potentials. Regarding drought tolerance, Lobo and Zeon maintained higher normalized difference vegetation index (NDVI) and lower perceived canopy mortality at higher dehydration levels than Empire and Meyer. We use \"perceived\" because visual assessments of canopy mortality are influenced by drought-induced leaf rolling. During the recovery, leaves rehydrated and unrolled, so the \"actual\" canopy mortality could be evaluated. All cultivars exhibited similar mortality on the first recovery day despite Lobo and Zeon experiencing more severe dehydration. Throughout the recovery, Lobo and Empire exhibited faster re-growth and showed the lowest canopy mortality, and Lobo exhibited the highest NDVI. The improved drought resistance of Lobo and Zeon results from greater dehydration tolerance rather than avoidance. This study has implications for lawn owners selecting the best cultivars and for breeding programs aiming at improving drought resistance of zoysiagrasses.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14622"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CmPYL7 positively regulates the cold tolerance via interacting with CmPP2C24-like in oriental melon. CmPYL7通过与CmPP2C24-like相互作用正向调节东方甜瓜的耐寒性
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14628
Wei Liu, Yun Jiang, Yanling Lv, Lili Zhang, Shilei Liu, Zailiang Wang, Ming He, Jiawang Zhang

Pyrabactin or Actin Resistance1/PYR1-Like/Regulatory Components of abscisic acid (ABA) Receptors (PYR/PYL/RCARs, referred to as PYLs) are direct receptors of ABA that function pivotally in the ABA-signaling pathway. Previously, we discovered that CmPYL7 was strongly upregulated by cold stress in oriental melon (Cucumis melo). In this study, we demonstrated that CmPYL7 was strongly induced by cold treatment (Cold), Cold+ABA, and Cold+fluridone (Flu, an ABA inhibitor) treatments, while the expression level of CmPYL7 under Cold+Flu is lower than that of cold treatment. Silencing CmPYL7 in oriental melon seedlings significantly decreased cold tolerance due to the reduced activities of antioxidant enzymes [superoxide dismutase (SOD); catalase (CAT), and ascorbate peroxidase (APX)] and the accumulation of H2O2, accompanied by higher electrolyte leakage and MDA content, but lower proline and soluble sugar content. In contrast, overexpressing CmPYL7 in Arabidopsis plants significantly increased cold tolerance owing to the enhanced activities of antioxidant enzymes (SOD, CAT, and APX) and limited H2O2, accompanied by lower electrolyte leakage and MDA content, but higher proline and soluble sugar contents. CmPYL7 was found to interact with CmPP2C24-like in vivo and in vitro, whose expression is downregulated under cold stress. Furthermore, silenced CmPP2C24-like in oriental melon plants significantly increased cold tolerance, exhibiting lower electrolyte leakage and MDA content and higher proline and soluble sugar contents. The activities of SOD, CAT, and APX were further enhanced and contents of H2O2 were significantly limited from increasing in TRV-CmPP2C24-like seedlings. These results demonstrated that CmPYL7 functions positively in the ABA-signaling pathway to regulate cold tolerance by interacting with CmPP2C24-like protein.

Pyrabactin or Actin Resistance1/PYR1-Like/Regulatory Components of abscisic acid (ABA) Receptors (PYR/PYL/RCARs, referred to as PYLs) 是 ABA 的直接受体,在 ABA 信号通路中起着关键作用。此前,我们发现 CmPYL7 在东方甜瓜(Cucumis melo)的冷胁迫下强烈上调。在本研究中,我们证明了 CmPYL7 在冷处理(Cold)、冷+ABA 和冷+氟里酮(Flu,一种 ABA 抑制剂)处理下被强烈诱导,而 CmPYL7 在冷+Flu 处理下的表达水平低于冷处理。由于抗氧化酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)]的活性降低和 H2O2 的积累,以及伴随着较高的电解质渗漏和 MDA 含量,但较低的脯氨酸和可溶性糖含量,东方甜瓜幼苗沉默 CmPYL7 会显著降低耐寒性。相反,在拟南芥植株中过表达 CmPYL7 能显著提高耐寒性,这是因为抗氧化酶(SOD、CAT 和 APX)的活性增强,H2O2 受限,同时电解质渗漏和 MDA 含量降低,但脯氨酸和可溶性糖含量增加。研究发现,CmPYL7 在体内和体外与 CmPP2C24-like 相互作用,而 CmPP2C24-like 在冷胁迫下表达下调。此外,沉默 CmPP2C24-like 的幌子瓜植株能显著提高耐寒性,降低电解质渗漏和 MDA 含量,提高脯氨酸和可溶性糖含量。在 TRV-CmPP2C24 样的幼苗中,SOD、CAT 和 APX 的活性进一步提高,H2O2 含量的增加受到明显限制。这些结果表明,CmPYL7通过与CmPP2C24-like蛋白相互作用,在ABA信号通路中发挥了调节耐寒性的积极功能。
{"title":"CmPYL7 positively regulates the cold tolerance via interacting with CmPP2C24-like in oriental melon.","authors":"Wei Liu, Yun Jiang, Yanling Lv, Lili Zhang, Shilei Liu, Zailiang Wang, Ming He, Jiawang Zhang","doi":"10.1111/ppl.14628","DOIUrl":"https://doi.org/10.1111/ppl.14628","url":null,"abstract":"<p><p>Pyrabactin or Actin Resistance1/PYR1-Like/Regulatory Components of abscisic acid (ABA) Receptors (PYR/PYL/RCARs, referred to as PYLs) are direct receptors of ABA that function pivotally in the ABA-signaling pathway. Previously, we discovered that CmPYL7 was strongly upregulated by cold stress in oriental melon (Cucumis melo). In this study, we demonstrated that CmPYL7 was strongly induced by cold treatment (Cold), Cold+ABA, and Cold+fluridone (Flu, an ABA inhibitor) treatments, while the expression level of CmPYL7 under Cold+Flu is lower than that of cold treatment. Silencing CmPYL7 in oriental melon seedlings significantly decreased cold tolerance due to the reduced activities of antioxidant enzymes [superoxide dismutase (SOD); catalase (CAT), and ascorbate peroxidase (APX)] and the accumulation of H<sub>2</sub>O<sub>2</sub>, accompanied by higher electrolyte leakage and MDA content, but lower proline and soluble sugar content. In contrast, overexpressing CmPYL7 in Arabidopsis plants significantly increased cold tolerance owing to the enhanced activities of antioxidant enzymes (SOD, CAT, and APX) and limited H<sub>2</sub>O<sub>2</sub>, accompanied by lower electrolyte leakage and MDA content, but higher proline and soluble sugar contents. CmPYL7 was found to interact with CmPP2C24-like in vivo and in vitro, whose expression is downregulated under cold stress. Furthermore, silenced CmPP2C24-like in oriental melon plants significantly increased cold tolerance, exhibiting lower electrolyte leakage and MDA content and higher proline and soluble sugar contents. The activities of SOD, CAT, and APX were further enhanced and contents of H<sub>2</sub>O<sub>2</sub> were significantly limited from increasing in TRV-CmPP2C24-like seedlings. These results demonstrated that CmPYL7 functions positively in the ABA-signaling pathway to regulate cold tolerance by interacting with CmPP2C24-like protein.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14628"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does succulence in woody plants delay desiccation, and is stored water used to maintain physiological function during drought conditions? 木本植物的肉质化是否会延迟干燥,储存的水分是否用于在干旱条件下维持生理功能?
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14616
Bihan Guo, Stefan K Arndt, Rebecca E Miller, Christopher Szota, Claire Farrell

Succulence is a trait that describes water storage in plant organs and tissues regardless of life form. Plants use the stored water to maintain physiological function and delay desiccation. However, it is unclear whether succulence in leaves, stems and roots of woody plants delays desiccation, whether it provides 'utilizable water' to maintain physiological function, or buffers changes in water status in drying soils through capacitance. We conducted a pot dry-down experiment with nine shrub species to determine whether woody plants with greater leaf, stem, or root succulence have greater shoot utilizable water or capacitance. We also investigated whether greater succulence delays desiccation, represented by cumulative VPD, until evapotranspiration ceased or until utilizable water was exhausted. Greater leaf and stem succulence were strongly related to greater shoot utilizable water and capacitance. However, desiccation time was not delayed in plants with greater total shoot succulence, utilizable water, or capacitance. Instead, woody plants with greater root succulence had longer desiccation times. This suggests that woody plants use aboveground succulence to maintain physiological function and water status during drought, whereas root succulence extends desiccation time. Our study improves the mechanistic understanding of how woody plants use stored water to survive in dryland ecosystems.

多汁性是指植物器官和组织储水的特性,与生命形式无关。植物利用储存的水分来维持生理机能和延缓干燥。然而,目前还不清楚木本植物叶、茎和根中的多汁性是否能延缓干燥,是否能提供 "可利用的水分 "以维持生理功能,或通过电容缓冲干燥土壤中水分状态的变化。我们用九种灌木物种进行了盆栽干燥实验,以确定叶片、茎或根部肉质化程度较高的木本植物是否具有更高的嫩枝可利用水分或电容。我们还研究了叶片和茎干肉质化程度较高的植物是否会延迟干燥(以累积 VPD 表示),直到蒸腾作用停止或可利用水分耗尽。叶片和茎的多汁性与嫩枝的可利用水分和容重密切相关。然而,总芽肉质度、可利用水量或容重较大的植物的干燥时间并没有推迟。相反,根系肉质化程度较高的木本植物的干燥时间更长。这表明木本植物在干旱期间利用地上部分的多汁来维持生理功能和水分状态,而根部多汁则延长了干燥时间。我们的研究加深了人们对木本植物如何利用储存的水分在干旱地区生态系统中生存的机理认识。
{"title":"Does succulence in woody plants delay desiccation, and is stored water used to maintain physiological function during drought conditions?","authors":"Bihan Guo, Stefan K Arndt, Rebecca E Miller, Christopher Szota, Claire Farrell","doi":"10.1111/ppl.14616","DOIUrl":"https://doi.org/10.1111/ppl.14616","url":null,"abstract":"<p><p>Succulence is a trait that describes water storage in plant organs and tissues regardless of life form. Plants use the stored water to maintain physiological function and delay desiccation. However, it is unclear whether succulence in leaves, stems and roots of woody plants delays desiccation, whether it provides 'utilizable water' to maintain physiological function, or buffers changes in water status in drying soils through capacitance. We conducted a pot dry-down experiment with nine shrub species to determine whether woody plants with greater leaf, stem, or root succulence have greater shoot utilizable water or capacitance. We also investigated whether greater succulence delays desiccation, represented by cumulative VPD, until evapotranspiration ceased or until utilizable water was exhausted. Greater leaf and stem succulence were strongly related to greater shoot utilizable water and capacitance. However, desiccation time was not delayed in plants with greater total shoot succulence, utilizable water, or capacitance. Instead, woody plants with greater root succulence had longer desiccation times. This suggests that woody plants use aboveground succulence to maintain physiological function and water status during drought, whereas root succulence extends desiccation time. Our study improves the mechanistic understanding of how woody plants use stored water to survive in dryland ecosystems.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14616"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees. 将幼树和成年树的气孔大小和密度与水分利用效率和叶碳同位素比率联系起来。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14619
Peter Petrík, Anja Petek-Petrík, Laurent J Lamarque, Roman M Link, Pierre-André Waite, Nadine K Ruehr, Bernhard Schuldt, Vincent Maire

Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal morphology. However, the impact of stomatal morphology on WUE across different ontogenetic stages of tree species is not well-documented. Here, we investigated the relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and leaf carbon isotope ratio (δ13C). We sampled 190 individuals, including juvenile and mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA), iWUE and bulk leaf δ13C as a proxy for long-term WUE. Leaf δ13C correlated positively with iWUE across species in both juvenile and mature trees, while GCL showed a negative and SD a positive effect on iWUE and leaf δ13C. Within species, however, only GCL was significantly associated with iWUE and leaf δ13C. SLA had a minor negative influence on iWUE and leaf δ13C, but this effect was inconsistent between juvenile and mature trees. We conclude that GCL and SD can be considered functional morphological traits related to the iWUE and leaf δ13C of trees, highlighting their potential for rapid phenotyping approaches in ecological studies.

水分利用效率(WUE)受包括气孔形态在内的多种叶片特征的影响。然而,气孔形态在树种不同发育阶段对水分利用效率的影响还没有得到很好的记录。在此,我们研究了气孔形态、内在水分利用效率(iWUE)和叶片碳同位素比(δ13C)之间的关系。我们采集了190个个体的样本,包括18个温带阔叶树种和9个属的幼树和成树。我们测量了保卫细胞长度(GCL)、气孔密度(SD)、比叶面积(SLA)、iWUE和作为长期WUE替代物的叶片δ13C。不同树种的幼树和成龄树的叶δ13C与iWUE呈正相关,而GCL对iWUE和叶δ13C的影响为负,SD为正。然而,在树种内部,只有 GCL 与 iWUE 和叶δ13C 显著相关。SLA对iWUE和叶δ13C有轻微的负面影响,但这种影响在幼树和成年树之间并不一致。我们的结论是,GCL和SD可被视为与树木iWUE和叶δ13C相关的功能形态性状,突出了它们在生态研究中作为快速表型方法的潜力。
{"title":"Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees.","authors":"Peter Petrík, Anja Petek-Petrík, Laurent J Lamarque, Roman M Link, Pierre-André Waite, Nadine K Ruehr, Bernhard Schuldt, Vincent Maire","doi":"10.1111/ppl.14619","DOIUrl":"https://doi.org/10.1111/ppl.14619","url":null,"abstract":"<p><p>Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal morphology. However, the impact of stomatal morphology on WUE across different ontogenetic stages of tree species is not well-documented. Here, we investigated the relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and leaf carbon isotope ratio (δ<sup>13</sup>C). We sampled 190 individuals, including juvenile and mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA), iWUE and bulk leaf δ<sup>13</sup>C as a proxy for long-term WUE. Leaf δ<sup>13</sup>C correlated positively with iWUE across species in both juvenile and mature trees, while GCL showed a negative and SD a positive effect on iWUE and leaf δ<sup>13</sup>C. Within species, however, only GCL was significantly associated with iWUE and leaf δ<sup>13</sup>C. SLA had a minor negative influence on iWUE and leaf δ<sup>13</sup>C, but this effect was inconsistent between juvenile and mature trees. We conclude that GCL and SD can be considered functional morphological traits related to the iWUE and leaf δ<sup>13</sup>C of trees, highlighting their potential for rapid phenotyping approaches in ecological studies.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14619"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste. 创新方法:利用葡萄园修剪废料焚烧产生的烟雾溶液减轻葡萄幼苗的镉毒性。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14624
Adem Yağcı, Selda Daler, Ozkan Kaya

Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl2 to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m-2.sn-1), and total phenolic content (1.89 mg.g-1), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g-1). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg-1), catalase (CAT) (1.55 U.mg-1), and ascorbate peroxidase (APX) (3.03 U.mg-1). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.

虽然植物提取的烟雾溶液(SSs)在多种植物物种中都表现出了促进生长的特性,但它们在减轻重金属胁迫(尤其是在葡萄树中)方面的潜在作用仍未得到探索和报道。这一知识空白促使本研究评估了叶面喷施浓度为 0%、0.5%、1% 和 2% 的葡萄园修剪废料衍生 SSs 在减轻葡萄树苗镉(Cd)植物毒性方面的功效。在我们的研究中,在施肥的同时向树苗根部施用 10 毫克/千克氯化镉(CdCl2),诱发镉胁迫。我们的研究结果表明,镉毒性会阻碍葡萄树苗的生长,对芽和根的长度以及鲜重产生不利影响。此外,它还导致叶绿素含量、气孔导度和叶片含水量降低,同时显著增加了膜损伤和脂质过氧化。值得注意的是,与对照和其他浓度相比,施用 0.5% SS 能更有效地调节生理生化反应,从而促进葡萄树苗的生长,减轻镉胁迫引起的损伤。根据我们的研究结果,在镉胁迫条件下,施用 0.5% SS 能有效提高叶绿素含量、相对含水量(RWC)、气孔导度(1.79 mmol.m-2.sn-1)和总酚含量(1.89 mg.g-1),同时显著降低丙二醛(MDA)水平和膜损伤(1.35 nmol.g-1)。此外,它还能明显提高抗氧化酶的活性,包括超氧化物歧化酶(SOD)(2.16 U.mg-1)、过氧化氢酶(CAT)(1.55 U.mg-1)和抗坏血酸过氧化物酶(APX)(3.03 U.mg-1)。研究表明,植物源 SS 可通过增强抗氧化防御机制来减轻葡萄藤的镉胁迫。
{"title":"An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste.","authors":"Adem Yağcı, Selda Daler, Ozkan Kaya","doi":"10.1111/ppl.14624","DOIUrl":"https://doi.org/10.1111/ppl.14624","url":null,"abstract":"<p><p>Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl<sub>2</sub> to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m<sup>-2</sup>.sn<sup>-1</sup>), and total phenolic content (1.89 mg.g<sup>-1</sup>), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g<sup>-1</sup>). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg<sup>-1</sup>), catalase (CAT) (1.55 U.mg<sup>-1</sup>), and ascorbate peroxidase (APX) (3.03 U.mg<sup>-1</sup>). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14624"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L. 通过全基因组关联图谱确定的第 17 号染色体上的一个 QTL 控制着葫芦 L. 的采后耐寒性。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1111/ppl.14602
Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena

The worldwide cultivated Cucurbita pepo L. is one of the most diverse species in the plant kingdom. In this study, chilling tolerance over a wide range of cultivars was characterized to discover the allelic variants to improving the postharvest quality of the immature fruit during cold storage. For this purpose, fruits from 126 accessions of worldwide origin have been evaluated for weight loss and chilling injury after 3, 7 and 14 days of cold storage, classifying them into tolerant, partially tolerant, and sensitive accessions. To verify this classification, antioxidant capacity and lipid peroxidation (MDA) of contrasting accessions (tolerant vs. sensitive) were assessed. The antioxidant capacity significantly decreased during cold storage in the sensitive accessions, while it was maintained in tolerant accessions. Additionally, the sensitive accessions presented a higher accumulation of MDA during this period. Finally, a GWAS analysis using GBS data available in CuGenDBv2, combined with weight loss percentage data, led to the identification of a candidate QTL located on chromosome 17 that regulates postharvest cold tolerance in zucchini. The region contains four SNPs whose alternative alleles were significantly associated with lower weight loss percentage and chilling injury indices during cold storage. Two SNPs are located in the 3' UTR region of the gene CpERS1, a gene involved in ethylene perception. The other two SNPs generate missense mutations in the coding region of a Pectin methyl esterase inhibitor gene (CpPMI). The role of this QTL and these variants in chilling tolerance is discussed.

全世界栽培的葫芦科植物是植物王国中最多样化的物种之一。在这项研究中,对多种栽培品种的耐寒性进行了表征,以发现在冷藏过程中提高未成熟果实采后品质的等位基因变异。为此,对来自世界各地的 126 个品种的果实进行了冷藏 3、7 和 14 天后的失重和冷害评估,将其分为耐寒品种、部分耐寒品种和敏感品种。为了验证这一分类,对不同品种(耐寒与敏感)的抗氧化能力和脂质过氧化(MDA)进行了评估。在冷藏过程中,敏感品种的抗氧化能力明显下降,而耐受品种的抗氧化能力保持不变。此外,在此期间,敏感品种的 MDA 积累更高。最后,利用 CuGenDBv2 中的 GBS 数据并结合失重百分比数据进行的 GWAS 分析,确定了位于第 17 号染色体上的候选 QTL,该 QTL 调控西葫芦的采后耐寒性。该区域包含四个 SNPs,其替代等位基因与冷藏期间较低的失重率和冷冻损伤指数显著相关。其中两个 SNP 位于参与乙烯感知的基因 CpERS1 的 3' UTR 区域。另外两个 SNPs 在果胶甲酯酶抑制剂基因(CpPMI)的编码区产生错义突变。本文讨论了该 QTL 和这些变异在耐寒性中的作用。
{"title":"A QTL on chromosome 17 identified by Genome-Wide Association Mapping controls postharvest cold tolerance of Cucurbita pepo L.","authors":"Alicia García, Alejandro Castro-Cegrí, Alba López, María Segura, Álvaro Benítez, Dolores Garrido, Francisco Palma, Cecilia Martínez, Manuel Jamilena","doi":"10.1111/ppl.14602","DOIUrl":"https://doi.org/10.1111/ppl.14602","url":null,"abstract":"<p><p>The worldwide cultivated Cucurbita pepo L. is one of the most diverse species in the plant kingdom. In this study, chilling tolerance over a wide range of cultivars was characterized to discover the allelic variants to improving the postharvest quality of the immature fruit during cold storage. For this purpose, fruits from 126 accessions of worldwide origin have been evaluated for weight loss and chilling injury after 3, 7 and 14 days of cold storage, classifying them into tolerant, partially tolerant, and sensitive accessions. To verify this classification, antioxidant capacity and lipid peroxidation (MDA) of contrasting accessions (tolerant vs. sensitive) were assessed. The antioxidant capacity significantly decreased during cold storage in the sensitive accessions, while it was maintained in tolerant accessions. Additionally, the sensitive accessions presented a higher accumulation of MDA during this period. Finally, a GWAS analysis using GBS data available in CuGenDBv2, combined with weight loss percentage data, led to the identification of a candidate QTL located on chromosome 17 that regulates postharvest cold tolerance in zucchini. The region contains four SNPs whose alternative alleles were significantly associated with lower weight loss percentage and chilling injury indices during cold storage. Two SNPs are located in the 3' UTR region of the gene CpERS1, a gene involved in ethylene perception. The other two SNPs generate missense mutations in the coding region of a Pectin methyl esterase inhibitor gene (CpPMI). The role of this QTL and these variants in chilling tolerance is discussed.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14602"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiologia plantarum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1