Deep learning approaches for the detection of scar presence from cine cardiac magnetic resonance adding derived parametric images.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-01-01 Epub Date: 2024-08-06 DOI:10.1007/s11517-024-03175-z
Francesca Righetti, Giulia Rubiu, Marco Penso, Sara Moccia, Maria L Carerj, Mauro Pepi, Gianluca Pontone, Enrico G Caiani
{"title":"Deep learning approaches for the detection of scar presence from cine cardiac magnetic resonance adding derived parametric images.","authors":"Francesca Righetti, Giulia Rubiu, Marco Penso, Sara Moccia, Maria L Carerj, Mauro Pepi, Gianluca Pontone, Enrico G Caiani","doi":"10.1007/s11517-024-03175-z","DOIUrl":null,"url":null,"abstract":"<p><p>This work proposes a convolutional neural network (CNN) that utilizes different combinations of parametric images computed from cine cardiac magnetic resonance (CMR) images, to classify each slice for possible myocardial scar tissue presence. The CNN performance comparison in respect to expert interpretation of CMR with late gadolinium enhancement (LGE) images, used as ground truth (GT), was conducted on 206 patients (158 scar, 48 control) from Centro Cardiologico Monzino (Milan, Italy) at both slice- and patient-levels. Left ventricle dynamic features were extracted in non-enhanced cine images using parametric images based on both Fourier and monogenic signal analyses. The CNN, fed with cine images and Fourier-based parametric images, achieved an area under the ROC curve of 0.86 (accuracy 0.79, F1 0.81, sensitivity 0.9, specificity 0.65, and negative (NPV) and positive (PPV) predictive values 0.83 and 0.77, respectively), for individual slice classification. Remarkably, it exhibited 1.0 prediction accuracy (F1 0.98, sensitivity 1.0, specificity 0.9, NPV 1.0, and PPV 0.97) in patient classification as a control or pathologic. The proposed approach represents a first step towards scar detection in contrast-free CMR images. Patient-level results suggest its preliminary potential as a screening tool to guide decisions regarding LGE-CMR prescription, particularly in cases where indication is uncertain.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"59-73"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03175-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a convolutional neural network (CNN) that utilizes different combinations of parametric images computed from cine cardiac magnetic resonance (CMR) images, to classify each slice for possible myocardial scar tissue presence. The CNN performance comparison in respect to expert interpretation of CMR with late gadolinium enhancement (LGE) images, used as ground truth (GT), was conducted on 206 patients (158 scar, 48 control) from Centro Cardiologico Monzino (Milan, Italy) at both slice- and patient-levels. Left ventricle dynamic features were extracted in non-enhanced cine images using parametric images based on both Fourier and monogenic signal analyses. The CNN, fed with cine images and Fourier-based parametric images, achieved an area under the ROC curve of 0.86 (accuracy 0.79, F1 0.81, sensitivity 0.9, specificity 0.65, and negative (NPV) and positive (PPV) predictive values 0.83 and 0.77, respectively), for individual slice classification. Remarkably, it exhibited 1.0 prediction accuracy (F1 0.98, sensitivity 1.0, specificity 0.9, NPV 1.0, and PPV 0.97) in patient classification as a control or pathologic. The proposed approach represents a first step towards scar detection in contrast-free CMR images. Patient-level results suggest its preliminary potential as a screening tool to guide decisions regarding LGE-CMR prescription, particularly in cases where indication is uncertain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从电影心脏磁共振添加衍生参数图像中检测疤痕存在的深度学习方法。
这项研究提出了一种卷积神经网络(CNN),它利用从电影心脏磁共振(CMR)图像中计算出的参数图像的不同组合,对每个切片进行分类,以确定是否存在心肌瘢痕组织。CNN 的性能与专家对 CMR 晚期钆增强(LGE)图像的判读进行了比较,后者被用作地面实况(GT),对来自蒙齐诺心脏病中心(意大利米兰)的 206 名患者(158 名瘢痕患者,48 名对照组患者)进行了切片和患者级别的比较。使用基于傅立叶和单源信号分析的参数图像在非增强 cine 图像中提取左心室动态特征。使用 cine 图像和基于傅立叶的参数图像的 CNN 对单个切片进行分类的 ROC 曲线下面积达到 0.86(准确率 0.79,F1 0.81,灵敏度 0.9,特异性 0.65,阴性预测值(NPV)和阳性预测值(PPV)分别为 0.83 和 0.77)。值得注意的是,在将患者分类为对照组或病理组时,它的预测准确度达到了 1.0(F1 0.98、灵敏度 1.0、特异性 0.9、NPV 1.0 和 PPV 0.97)。所提出的方法代表了在无对比度 CMR 图像中进行疤痕检测的第一步。患者层面的结果表明,该方法具有作为筛查工具的初步潜力,可指导有关 LGE-CMR 处方的决策,尤其是在适应症不确定的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
RGVPSeg: multimodal information fusion network for retinogeniculate visual pathway segmentation. Rehabilitation exercise quality assessment through supervised contrastive learning with hard and soft negatives. Multi-step framework for glaucoma diagnosis in retinal fundus images using deep learning. The heart sound classification of congenital heart disease by using median EEMD-Hurst and threshold denoising method. Deep learning approaches for the detection of scar presence from cine cardiac magnetic resonance adding derived parametric images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1