Lysosomal TBK1 responds to amino acid availability to relieve Rab7-dependent mTORC1 inhibition.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Journal Pub Date : 2024-09-01 Epub Date: 2024-08-05 DOI:10.1038/s44318-024-00180-8
Gabriel Talaia, Amanda Bentley-DeSousa, Shawn M Ferguson
{"title":"Lysosomal TBK1 responds to amino acid availability to relieve Rab7-dependent mTORC1 inhibition.","authors":"Gabriel Talaia, Amanda Bentley-DeSousa, Shawn M Ferguson","doi":"10.1038/s44318-024-00180-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"3948-3967"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00180-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶酶体 TBK1 对氨基酸的可用性做出反应,以缓解 Rab7 依赖性 mTORC1 的抑制作用。
溶酶体在协调大分子降解以及调节细胞生长和新陈代谢方面发挥着关键作用。尽管在鉴定溶酶体信号蛋白方面取得了重大进展,但对使溶酶体功能与不断变化的细胞需求同步的途径的了解仍然不全面。本研究发现了 TANK 结合激酶 1(TBK1)在调节溶酶体对营养物质的反应能力方面的作用,TBK1 因其在先天性免疫和细胞器质量控制中的作用而广为人知。具体来说,我们发现了一个 TBK1 池,它在氨基酸水平升高时被招募到溶酶体。这种溶酶体 TBK1 会使 Rab7 的丝氨酸 72 磷酸化。这对于减轻 Rab7 介导的氨基酸依赖性 mTORC1 激活的抑制作用至关重要。此外,一种与肌萎缩性侧索硬化症和额颞叶痴呆症相关的 TBK1 突变体(E696K)会在溶酶体中蓄积,导致 Rab7 磷酸化升高和 mTORC1 激活增加。这一数据证实溶酶体是氨基酸调控 TBK1 信号的场所,对有效激活 mTORC1 至关重要。这种溶酶体 TBK1 池对溶酶体的稳态具有更广泛的意义,它的失调可能导致 ALS-FTD 的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
期刊最新文献
STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NF-κB signaling. Structural insight into Okazaki fragment maturation mediated by PCNA-bound FEN1 and RNaseH2. An EpCAM/Trop2 mechanostat differentially regulates collective behaviour of human carcinoma cells. Author Correction: Single-cell transcriptomics stratifies organoid models of metabolic dysfunction-associated steatotic liver disease. Fibrillarin homologs regulate translation in divergent cell lineages during planarian homeostasis and regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1