A Pseudo-Spectral Method for Wall Shear Stress Estimation from Doppler Ultrasound Imaging in Coronary Arteries.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Engineering and Technology Pub Date : 2024-12-01 Epub Date: 2024-08-05 DOI:10.1007/s13239-024-00741-2
Jimena Martín Tempestti, Saeyoung Kim, Brooks D Lindsey, Alessandro Veneziani
{"title":"A Pseudo-Spectral Method for Wall Shear Stress Estimation from Doppler Ultrasound Imaging in Coronary Arteries.","authors":"Jimena Martín Tempestti, Saeyoung Kim, Brooks D Lindsey, Alessandro Veneziani","doi":"10.1007/s13239-024-00741-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incompressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. This paper presents a novel method for WSS quantification from 2D vector Doppler measurements.</p><p><strong>Methods: </strong>Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier approximations of the derivatives to compute the WSS.</p><p><strong>Results: </strong>Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods.</p><p><strong>Conclusion: </strong>The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, which also requires high-quality data to reconstruct the vessel geometry.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"647-666"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00741-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incompressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. This paper presents a novel method for WSS quantification from 2D vector Doppler measurements.

Methods: Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier approximations of the derivatives to compute the WSS.

Results: Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods.

Conclusion: The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, which also requires high-quality data to reconstruct the vessel geometry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从冠状动脉多普勒超声成像估算壁剪应力的伪频谱法
目的:壁面剪切应力(WSS)是不可压缩流体中法线应力张量边界的切向分量,它已被公认为是预测心血管疾病,尤其是冠心病可能发生的不良事件的重要指标。在特定患者的情况下,WSS 的量化可以通过基于患者几何形状的计算流体力学(CFD)分析来实现,也可以通过基于血流速度数据(如超声(US)多普勒测量)的数值近似来检索。本文介绍了一种从二维矢量多普勒测量中量化 WSS 的新方法:方法:通过非聚焦平面波和横向振荡获取图像,以获得两个平面内的速度分量。这些速度分量使用基于傅里叶导数近似的伪谱微分技术进行处理,以计算 WSS:我们的伪谱法(PSM)在两个血管模型(直管和狭窄血管)中进行了测试,其中应用了 15 mL/min 的稳定流。该方法成功通过了 CFD 模拟验证,并与当前基于抛物线速度曲线假设的技术进行了比较。PSM 能准确检测出不同于直圆柱体的几何形状中的壁面剪切应力(WSS)变化,而且对测量噪声的敏感性较低。特别是,在使用圆柱形几何结构的合成数据(无噪声,例如由 CFD 生成)时,基于 Poiseuille 的方法和 PSM 的精度相当;相反,在使用 US 测量数据时,PSM 得出的 WSS 平均误差比最先进方法得出的误差小 3 到 9 倍:结论:伪频谱方法可以在存在噪声数据的情况下控制近似误差。结论:伪频谱方法可以在存在噪声数据的情况下控制近似误差,从而为现行标准提供了一个更精确的替代方案,而且与同样需要高质量数据来重建血管几何形状的 CFD 相比,伪频谱方法的计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
期刊最新文献
Investigation of Inter-Patient, Intra-Patient, and Patient-Specific Based Training in Deep Learning for Classification of Heartbeat Arrhythmia. Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images. The Impact of Peripheral Vascular Motion on Acute Drug Retention of Intravascular Devices. Performance Comparison of Centered and Tilted Blunt and Lighthouse Tip Cannulae for Drainage in Extracorporeal Life Support. A Novel Transcatheter Device to Treat Calcific Aortic Valve Stenosis: An Ex Vivo Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1