The Impact of Peripheral Vascular Motion on Acute Drug Retention of Intravascular Devices.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Engineering and Technology Pub Date : 2025-02-13 DOI:10.1007/s13239-025-00776-z
Trey Ursillo, Kayla Lowry, Catherine Allred, Mollie Phillips, Linda B Liu, Danyi Chen, Saami K Yazdani
{"title":"The Impact of Peripheral Vascular Motion on Acute Drug Retention of Intravascular Devices.","authors":"Trey Ursillo, Kayla Lowry, Catherine Allred, Mollie Phillips, Linda B Liu, Danyi Chen, Saami K Yazdani","doi":"10.1007/s13239-025-00776-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This goal of this study was to determine the impact of vascular motion on acute drug transfer and retention of drug-coated balloons (DCB) or drug-eluting stents (DES).</p><p><strong>Methods: </strong>Commercially available paclitaxel DCBs (Lutonix & IN.PACT) and a paclitaxel DES (Zilver) were subjected to physiological flow and vascular motion conditions using a peripheral-simulating benchtop bioreactor system. Each DCB- or DES-treated artery was subjected to three sets of movement parameters including pulsatile flow with no twisting/bending (P1), pulsatile flow with 16.8° twist, 25° bend and 3.2 mm compression (P2), and pulsatile flow with 68° twist, 35° bend, 21 mm compression (P3). After 24 h, the treated segments were removed and paclitaxel concentrations were measured using pharmacokinetic analysis.</p><p><strong>Results: </strong>In the group of arteries treated with the Lutonix DCB, there was a significant decrease in arterial paclitaxel concentrations between the P1 and both the P2 and P3 moving parameters (P1 = 404 ± 195 ng/mg, P2 = 14.9 ± 9.92 ng/mg, P3 = 19.2 ± 15.4 ng/mg; P1-P2 p = 0.007, P1-P3 p = 0.005). For the IN.PACT DCB group, no differences in the mean arterial paclitaxel concentrations were observed for the various movements (p = 0.55). Lastly, in the Zilver DES group, differences were only measured between the P2 and P3 moving parameters (P2 = 84.8 ± 32.7 ng/mg, P3 = 0.11 ± 0.06 ng/mg; P2-P3 p = 0.01).</p><p><strong>Conclusion: </strong>Acute retention of arterial paclitaxel levels can be adversely impacted by vascular movement in both DES- and DCB- treated arteries.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-025-00776-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This goal of this study was to determine the impact of vascular motion on acute drug transfer and retention of drug-coated balloons (DCB) or drug-eluting stents (DES).

Methods: Commercially available paclitaxel DCBs (Lutonix & IN.PACT) and a paclitaxel DES (Zilver) were subjected to physiological flow and vascular motion conditions using a peripheral-simulating benchtop bioreactor system. Each DCB- or DES-treated artery was subjected to three sets of movement parameters including pulsatile flow with no twisting/bending (P1), pulsatile flow with 16.8° twist, 25° bend and 3.2 mm compression (P2), and pulsatile flow with 68° twist, 35° bend, 21 mm compression (P3). After 24 h, the treated segments were removed and paclitaxel concentrations were measured using pharmacokinetic analysis.

Results: In the group of arteries treated with the Lutonix DCB, there was a significant decrease in arterial paclitaxel concentrations between the P1 and both the P2 and P3 moving parameters (P1 = 404 ± 195 ng/mg, P2 = 14.9 ± 9.92 ng/mg, P3 = 19.2 ± 15.4 ng/mg; P1-P2 p = 0.007, P1-P3 p = 0.005). For the IN.PACT DCB group, no differences in the mean arterial paclitaxel concentrations were observed for the various movements (p = 0.55). Lastly, in the Zilver DES group, differences were only measured between the P2 and P3 moving parameters (P2 = 84.8 ± 32.7 ng/mg, P3 = 0.11 ± 0.06 ng/mg; P2-P3 p = 0.01).

Conclusion: Acute retention of arterial paclitaxel levels can be adversely impacted by vascular movement in both DES- and DCB- treated arteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
期刊最新文献
Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images. The Impact of Peripheral Vascular Motion on Acute Drug Retention of Intravascular Devices. Performance Comparison of Centered and Tilted Blunt and Lighthouse Tip Cannulae for Drainage in Extracorporeal Life Support. A Novel Transcatheter Device to Treat Calcific Aortic Valve Stenosis: An Ex Vivo Study. Finite Element Simulation of Opening Angle Response of Porcine Aortas Using Layer Specific GAG Distributions in One and Two Layered Solid Matrices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1