Victoria Watson, Catrin Tudur Smith, Laura J Bonnett
{"title":"Systematic review of methods used in prediction models with recurrent event data.","authors":"Victoria Watson, Catrin Tudur Smith, Laura J Bonnett","doi":"10.1186/s41512-024-00173-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients who suffer from chronic conditions or diseases are susceptible to experiencing repeated events of the same type (e.g. seizures), termed 'recurrent events'. Prediction models can be used to predict the risk of recurrence so that intervention or management can be tailored accordingly, but statistical methodology can vary. The objective of this systematic review was to identify and describe statistical approaches that have been applied for the development and validation of multivariable prediction models with recurrent event data. A secondary objective was to informally assess the characteristics and quality of analysis approaches used in the development and validation of prediction models of recurrent event data.</p><p><strong>Methods: </strong>Searches were run in MEDLINE using a search strategy in 2019 which included index terms and phrases related to recurrent events and prediction models. For studies to be included in the review they must have developed or validated a multivariable clinical prediction model for recurrent event outcome data, specifically modelling the recurrent events and the timing between them. The statistical analysis methods used to analyse the recurrent event data in the clinical prediction model were extracted to answer the primary aim of the systematic review. In addition, items such as the event rate as well as any discrimination and calibration statistics that were used to assess the model performance were extracted for the secondary aim of the review.</p><p><strong>Results: </strong>A total of 855 publications were identified using the developed search strategy and 301 of these are included in our systematic review. The Andersen-Gill method was identified as the most commonly applied method in the analysis of recurrent events, which was used in 152 (50.5%) studies. This was closely followed by frailty models which were used in 116 (38.5%) included studies. Of the 301 included studies, only 75 (24.9%) internally validated their model(s) and three (1.0%) validated their model(s) in an external dataset.</p><p><strong>Conclusions: </strong>This review identified a variety of methods which are used in practice when developing or validating prediction models for recurrent events. The variability of the approaches identified is cause for concern as it indicates possible immaturity in the field and highlights the need for more methodological research to bring greater consistency in approach of recurrent event analysis. Further work is required to ensure publications report all required information and use robust statistical methods for model development and validation.</p><p><strong>Prospero registration: </strong>CRD42019116031.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"8 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-024-00173-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Patients who suffer from chronic conditions or diseases are susceptible to experiencing repeated events of the same type (e.g. seizures), termed 'recurrent events'. Prediction models can be used to predict the risk of recurrence so that intervention or management can be tailored accordingly, but statistical methodology can vary. The objective of this systematic review was to identify and describe statistical approaches that have been applied for the development and validation of multivariable prediction models with recurrent event data. A secondary objective was to informally assess the characteristics and quality of analysis approaches used in the development and validation of prediction models of recurrent event data.
Methods: Searches were run in MEDLINE using a search strategy in 2019 which included index terms and phrases related to recurrent events and prediction models. For studies to be included in the review they must have developed or validated a multivariable clinical prediction model for recurrent event outcome data, specifically modelling the recurrent events and the timing between them. The statistical analysis methods used to analyse the recurrent event data in the clinical prediction model were extracted to answer the primary aim of the systematic review. In addition, items such as the event rate as well as any discrimination and calibration statistics that were used to assess the model performance were extracted for the secondary aim of the review.
Results: A total of 855 publications were identified using the developed search strategy and 301 of these are included in our systematic review. The Andersen-Gill method was identified as the most commonly applied method in the analysis of recurrent events, which was used in 152 (50.5%) studies. This was closely followed by frailty models which were used in 116 (38.5%) included studies. Of the 301 included studies, only 75 (24.9%) internally validated their model(s) and three (1.0%) validated their model(s) in an external dataset.
Conclusions: This review identified a variety of methods which are used in practice when developing or validating prediction models for recurrent events. The variability of the approaches identified is cause for concern as it indicates possible immaturity in the field and highlights the need for more methodological research to bring greater consistency in approach of recurrent event analysis. Further work is required to ensure publications report all required information and use robust statistical methods for model development and validation.