Bethany Hillier, Katie Scandrett, April Coombe, Tina Hernandez-Boussard, Ewout Steyerberg, Yemisi Takwoingi, Vladica Velickovic, Jacqueline Dinnes
{"title":"Risk prediction tools for pressure injury occurrence: an umbrella review of systematic reviews reporting model development and validation methods.","authors":"Bethany Hillier, Katie Scandrett, April Coombe, Tina Hernandez-Boussard, Ewout Steyerberg, Yemisi Takwoingi, Vladica Velickovic, Jacqueline Dinnes","doi":"10.1186/s41512-024-00182-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility. Our objectives were to identify and describe available risk prediction tools for PI occurrence, their content and the development and validation methods used.</p><p><strong>Methods: </strong>The umbrella review was conducted according to Cochrane guidance. MEDLINE, Embase, CINAHL, EPISTEMONIKOS, Google Scholar, and reference lists were searched to identify relevant systematic reviews. The risk of bias was assessed using adapted AMSTAR-2 criteria. Results were described narratively. All included reviews contributed to building a comprehensive list of risk prediction tools.</p><p><strong>Results: </strong>We identified 32 eligible systematic reviews only seven of which described the development and validation of risk prediction tools for PI. Nineteen reviews assessed the prognostic accuracy of the tools and 11 assessed clinical effectiveness. Of the seven reviews reporting model development and validation, six included only machine learning models. Two reviews included external validations of models, although only one review reported any details on external validation methods or results. This was also the only review to report measures of both discrimination and calibration. Five reviews presented measures of discrimination, such as the area under the curve (AUC), sensitivities, specificities, F1 scores, and G-means. For the four reviews that assessed the risk of bias assessment using the PROBAST tool, all models but one were found to be at high or unclear risk of bias.</p><p><strong>Conclusions: </strong>Available tools do not meet current standards for the development or reporting of risk prediction models. The majority of tools have not been externally validated. Standardised and rigorous approaches to risk prediction model development and validation are needed.</p><p><strong>Trial registration: </strong>The protocol was registered on the Open Science Framework ( https://osf.io/tepyk ).</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"9 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-024-00182-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pressure injuries (PIs) place a substantial burden on healthcare systems worldwide. Risk stratification of those who are at risk of developing PIs allows preventive interventions to be focused on patients who are at the highest risk. The considerable number of risk assessment scales and prediction models available underscores the need for a thorough evaluation of their development, validation, and clinical utility. Our objectives were to identify and describe available risk prediction tools for PI occurrence, their content and the development and validation methods used.
Methods: The umbrella review was conducted according to Cochrane guidance. MEDLINE, Embase, CINAHL, EPISTEMONIKOS, Google Scholar, and reference lists were searched to identify relevant systematic reviews. The risk of bias was assessed using adapted AMSTAR-2 criteria. Results were described narratively. All included reviews contributed to building a comprehensive list of risk prediction tools.
Results: We identified 32 eligible systematic reviews only seven of which described the development and validation of risk prediction tools for PI. Nineteen reviews assessed the prognostic accuracy of the tools and 11 assessed clinical effectiveness. Of the seven reviews reporting model development and validation, six included only machine learning models. Two reviews included external validations of models, although only one review reported any details on external validation methods or results. This was also the only review to report measures of both discrimination and calibration. Five reviews presented measures of discrimination, such as the area under the curve (AUC), sensitivities, specificities, F1 scores, and G-means. For the four reviews that assessed the risk of bias assessment using the PROBAST tool, all models but one were found to be at high or unclear risk of bias.
Conclusions: Available tools do not meet current standards for the development or reporting of risk prediction models. The majority of tools have not been externally validated. Standardised and rigorous approaches to risk prediction model development and validation are needed.
Trial registration: The protocol was registered on the Open Science Framework ( https://osf.io/tepyk ).