{"title":"Step Length Estimation for Blind Walkers.","authors":"Fatemeh Elyasi, Roberto Manduchi","doi":"10.1007/978-3-031-62846-7_48","DOIUrl":null,"url":null,"abstract":"<p><p>Wayfinding systems using inertial data recorded from a smartphone carried by the walker have great potential for increasing mobility independence of blind pedestrians. Pedestrian dead-reckoning (PDR) algorithms for localization require estimation of the step length of the walker. Prior work has shown that step length can be reliably predicted by processing the inertial data recorded by the smartphone with a simple machine learning algorithm. However, this prior work only considered sighted walkers, whose gait may be different from that of blind walkers using a long cane or a dog guide. In this work, we show that a step length estimation network trained on data from sighted walkers performs poorly when tested on blind walkers, and that retraining with data from blind walkers can dramatically increase the accuracy of step length prediction.</p>","PeriodicalId":90476,"journal":{"name":"Computers helping people with special needs : ... International Conference, ICCHP ... : proceedings. International Conference on Computers Helping People with Special Needs","volume":"14750 ","pages":"400-407"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298791/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers helping people with special needs : ... International Conference, ICCHP ... : proceedings. International Conference on Computers Helping People with Special Needs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-62846-7_48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wayfinding systems using inertial data recorded from a smartphone carried by the walker have great potential for increasing mobility independence of blind pedestrians. Pedestrian dead-reckoning (PDR) algorithms for localization require estimation of the step length of the walker. Prior work has shown that step length can be reliably predicted by processing the inertial data recorded by the smartphone with a simple machine learning algorithm. However, this prior work only considered sighted walkers, whose gait may be different from that of blind walkers using a long cane or a dog guide. In this work, we show that a step length estimation network trained on data from sighted walkers performs poorly when tested on blind walkers, and that retraining with data from blind walkers can dramatically increase the accuracy of step length prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盲人步行者的步长估计
使用步行者随身携带的智能手机记录的惯性数据的寻路系统在提高盲人步行者的行动独立性方面具有巨大潜力。用于定位的行人死区重定位(PDR)算法需要估算步行者的步长。先前的研究表明,通过使用简单的机器学习算法处理智能手机记录的惯性数据,可以可靠地预测步长。然而,之前的工作只考虑了视力正常的步行者,他们的步态可能与使用长手杖或导盲犬的盲人步行者不同。在这项工作中,我们证明了根据健视步行者的数据训练的步长估计网络在盲人步行者身上测试时表现不佳,而使用盲人步行者的数据重新训练可以显著提高步长预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step Length Estimation for Blind Walkers. Accessible Point-and-Tap Interaction for Acquiring Detailed Information about Tactile Graphics and 3D Models. Non-Visual Access to an Interactive 3D Map. Computers Helping People with Special Needs: 18th International Conference, ICCHP-AAATE 2022, Lecco, Italy, July 11–15, 2022, Proceedings, Part II Computers Helping People with Special Needs: 18th International Conference, ICCHP-AAATE 2022, Lecco, Italy, July 11–15, 2022, Proceedings, Part I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1