{"title":"Carbon monoxide enabling synergistic carbonylation and (hetero)aryl migration","authors":"Yuanrui Wang, Hefei Yang, Yan Zheng, Mingxia Hu, Jintao Zhu, Zhi-Peng Bao, Yanying Zhao, Xiao-Feng Wu","doi":"10.1038/s41929-024-01204-6","DOIUrl":null,"url":null,"abstract":"The activation and transformation of carbon monoxide (CO), a versatile C1 feedstock, continues to attract substantial attention. Traditionally, researchers have focused on the development of catalytic systems to activate CO and then quench the generated acyl intermediate with nucleophiles to complete the carbonylative transformations. Here, non-classically, we unveil a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction, in which the CO insertion step is a key element for functional group migration. The selective insertion of a carbonyl group into the newly generated carbon radical provides a bridge for (hetero)aryl group migration, and the positive feedback of group migration also enables the carbon radical to capture CO more efficiently. A series of 1,4-dicarbonyl compounds containing fluoroalkyl and heterocycles are synthesized successfully under mild conditions, and the conversion of the products to valuable heteroaromatic biaryls indicates the synthetic potential of this platform. The activation and transformation of carbon monoxide (CO) continues to attract much attention. Now, the authors report a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction in which the CO insertion step enables (hetero)aryl group migration.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1065-1075"},"PeriodicalIF":42.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01204-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The activation and transformation of carbon monoxide (CO), a versatile C1 feedstock, continues to attract substantial attention. Traditionally, researchers have focused on the development of catalytic systems to activate CO and then quench the generated acyl intermediate with nucleophiles to complete the carbonylative transformations. Here, non-classically, we unveil a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction, in which the CO insertion step is a key element for functional group migration. The selective insertion of a carbonyl group into the newly generated carbon radical provides a bridge for (hetero)aryl group migration, and the positive feedback of group migration also enables the carbon radical to capture CO more efficiently. A series of 1,4-dicarbonyl compounds containing fluoroalkyl and heterocycles are synthesized successfully under mild conditions, and the conversion of the products to valuable heteroaromatic biaryls indicates the synthetic potential of this platform. The activation and transformation of carbon monoxide (CO) continues to attract much attention. Now, the authors report a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction in which the CO insertion step enables (hetero)aryl group migration.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.