Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-08-05 DOI:10.1038/s41560-024-01604-9
Yuanyuan Zhou, Wei Yuan, Mengting Li, Zhenyang Xie, Xiaoyun Song, Yang Yang, Jian Wang, Li Li, Wei Ding, Wen-Feng Lin, Zidong Wei
{"title":"Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation","authors":"Yuanyuan Zhou, Wei Yuan, Mengting Li, Zhenyang Xie, Xiaoyun Song, Yang Yang, Jian Wang, Li Li, Wei Ding, Wen-Feng Lin, Zidong Wei","doi":"10.1038/s41560-024-01604-9","DOIUrl":null,"url":null,"abstract":"The anion-exchange-membrane fuel cell (AEMFC) is an attractive and cost-effective energy-conversion technology because it can use Earth-abundant and low-cost non-precious metal catalysts. However, non-precious metals used in AEMFCs to catalyse the hydrogen oxidation reaction are prone to self-oxidation, resulting in irreversible failure. Here we show a quantum well-like catalytic structure (QWCS), constructed by atomically confining Ni nanoparticles within a carbon-doped-MoOx/MoOx heterojunction (C-MoOx/MoOx) that can selectively transfer external electrons from the hydrogen oxidation reaction while remaining itself metallic. Electrons of Ni nanoparticles gain a barrier of 1.11 eV provided by the QWCS leading to Ni stability up to 1.2 V versus the reversible hydrogen electrode (VRHE) whereas electrons released from the hydrogen oxidation reaction easily cross the barrier by a gating operation of QWCS upon hydrogen adsorption. The QWCS-catalysed AEMFC achieved a high-power density of 486 mW mgNi−1 and withstood hydrogen starvation operations during shutdown–start cycles, whereas a counterpart AEMFC without QWCS failed in a single cycle. Non-precious metals used at the anode of anion-exchange-membrane fuel cells to catalyse hydrogen oxidation are prone to self-oxidation. Here Zhou and colleagues report that a quantum well-like catalytic structure containing Ni nanoparticles within a C-doped MoOx/MoOx heterojunction can mitigate such degradation by a gating operation.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01604-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01604-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The anion-exchange-membrane fuel cell (AEMFC) is an attractive and cost-effective energy-conversion technology because it can use Earth-abundant and low-cost non-precious metal catalysts. However, non-precious metals used in AEMFCs to catalyse the hydrogen oxidation reaction are prone to self-oxidation, resulting in irreversible failure. Here we show a quantum well-like catalytic structure (QWCS), constructed by atomically confining Ni nanoparticles within a carbon-doped-MoOx/MoOx heterojunction (C-MoOx/MoOx) that can selectively transfer external electrons from the hydrogen oxidation reaction while remaining itself metallic. Electrons of Ni nanoparticles gain a barrier of 1.11 eV provided by the QWCS leading to Ni stability up to 1.2 V versus the reversible hydrogen electrode (VRHE) whereas electrons released from the hydrogen oxidation reaction easily cross the barrier by a gating operation of QWCS upon hydrogen adsorption. The QWCS-catalysed AEMFC achieved a high-power density of 486 mW mgNi−1 and withstood hydrogen starvation operations during shutdown–start cycles, whereas a counterpart AEMFC without QWCS failed in a single cycle. Non-precious metals used at the anode of anion-exchange-membrane fuel cells to catalyse hydrogen oxidation are prone to self-oxidation. Here Zhou and colleagues report that a quantum well-like catalytic structure containing Ni nanoparticles within a C-doped MoOx/MoOx heterojunction can mitigate such degradation by a gating operation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子约束诱导的金属镍氢氧化电催化剂的抗电氧化作用
阴离子交换膜燃料电池(AEMFC)是一种极具吸引力和成本效益的能源转换技术,因为它可以使用地球上丰富且低成本的非贵金属催化剂。然而,AEMFC 中用于催化氢氧化反应的非贵金属容易发生自氧化,导致不可逆转的失效。在这里,我们展示了一种量子井状催化结构(QWCS),它是通过将镍纳米粒子原子限制在掺碳的氧化钼/氧化钼异质结(C-MoOx/MoOx)中而构建的,可以选择性地转移氢氧化反应中的外部电子,同时自身仍保持金属性。镍纳米粒子的电子获得了 QWCS 提供的 1.11 eV 的势垒,从而使镍相对于可逆氢电极(VRHE)的稳定性高达 1.2 V。QWCS 催化的 AEMFC 实现了 486 mW mgNi-1 的高功率密度,并在关机-启动循环期间经受住了氢饥饿操作,而没有 QWCS 的对应 AEMFC 在一个循环中就失效了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
A wind of change in sustainability The role of policy and module manufacturing learning in industrial decarbonization by small modular reactors The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells A nationally determined contribution framework for energy transition minerals Transparency is key for energy and environment philanthropy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1