Changyuan Zhao;Hongyang Du;Dusit Niyato;Jiawen Kang;Zehui Xiong;Dong In Kim;Xuemin Shen;Khaled B. Letaief
{"title":"Generative AI for Secure Physical Layer Communications: A Survey","authors":"Changyuan Zhao;Hongyang Du;Dusit Niyato;Jiawen Kang;Zehui Xiong;Dong In Kim;Xuemin Shen;Khaled B. Letaief","doi":"10.1109/TCCN.2024.3438379","DOIUrl":null,"url":null,"abstract":"Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content. Beyond content creation, GAI has significant analytical abilities to learn complex data distribution, offering numerous opportunities to resolve security issues. In the realm of security from physical layer perspectives, traditional AI approaches frequently struggle, primarily due to their limited capacity to dynamically adjust to the evolving physical attributes of transmission channels and the complexity of contemporary cyber threats. This adaptability and analytical depth are precisely where GAI excels. Therefore, in this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks. We first emphasize the importance of advanced GAI models in this area, including Generative Adversarial Networks (GANs), Autoencoders (AEs), Variational Autoencoders (VAEs), and Diffusion Models (DMs). We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity. Furthermore, we also present future research directions focusing model improvements, multi-scenario deployment, resource-efficient optimization, and secure semantic communication, highlighting the multifaceted potential of GAI to address emerging challenges in secure physical layer communications and sensing.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"11 1","pages":"3-26"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10623395/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content. Beyond content creation, GAI has significant analytical abilities to learn complex data distribution, offering numerous opportunities to resolve security issues. In the realm of security from physical layer perspectives, traditional AI approaches frequently struggle, primarily due to their limited capacity to dynamically adjust to the evolving physical attributes of transmission channels and the complexity of contemporary cyber threats. This adaptability and analytical depth are precisely where GAI excels. Therefore, in this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks. We first emphasize the importance of advanced GAI models in this area, including Generative Adversarial Networks (GANs), Autoencoders (AEs), Variational Autoencoders (VAEs), and Diffusion Models (DMs). We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity. Furthermore, we also present future research directions focusing model improvements, multi-scenario deployment, resource-efficient optimization, and secure semantic communication, highlighting the multifaceted potential of GAI to address emerging challenges in secure physical layer communications and sensing.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.