Harnessing the Power of Nano-Ferroelectrics: BaTiO3/MXene (Ti3C2Tx) Composites for Enhanced Lithium Storage

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-08-06 DOI:10.1002/aenm.202401988
Miao Tian, Jing Lyu, Ran Su, Xu Zhang, Kexin Wang, Xiang Lv, Dawei Zhang, Shuo-Wang Yang, John Hon Kay Yip, Zhongkai Hao, Guo Qin Xu
{"title":"Harnessing the Power of Nano-Ferroelectrics: BaTiO3/MXene (Ti3C2Tx) Composites for Enhanced Lithium Storage","authors":"Miao Tian,&nbsp;Jing Lyu,&nbsp;Ran Su,&nbsp;Xu Zhang,&nbsp;Kexin Wang,&nbsp;Xiang Lv,&nbsp;Dawei Zhang,&nbsp;Shuo-Wang Yang,&nbsp;John Hon Kay Yip,&nbsp;Zhongkai Hao,&nbsp;Guo Qin Xu","doi":"10.1002/aenm.202401988","DOIUrl":null,"url":null,"abstract":"<p>2D Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene is a desirable electrode material for advanced lithium-ion batteries (LIBs) in the pursuit of high energy and power densities, owing to its extensive reactive area and surface-induced pseudo-capacitance. Here, a novel synergistic strategy for fortifying lithium storage capability is first proposed, by in-situ anchoring BaTiO<sub>3</sub> ferroelectric nanoparticles on few-layered Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets (BT/f-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) using a hydrothermal method. The uniform BaTiO<sub>3</sub> nanoparticles effectively prevent the restacking of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets, successfully deplete metastable Ti atoms, and intriguingly form a thin and well-adhered solid electrolyte interface layer, enhancing the aggregation-resistant, oxidation-resistant, and electrochemical properties of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>. Simultaneously, the internal electric fields, originating from the spontaneous polarization of BaTiO<sub>3</sub> ferroelectric nanoparticles, can augment the adsorption of Li<sup>+</sup>, boosting the lithium storage capacity and reaction kinetics. The resulting composite electrode displays a remarkable charge capacity of 84 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>, almost five times that of pristine Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> electrode. The excellent rate performance and cyclability make BT/f-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> composites highly attractive for LIBs. Furthermore, this synthetic approach presented here is scalable and can be extended to other Ti-based materials. This strategy is expected to underscore the considerable potential of ferroelectric composites for integration into high-performance LIBs.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"14 43","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202401988","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

2D Ti3C2Tx MXene is a desirable electrode material for advanced lithium-ion batteries (LIBs) in the pursuit of high energy and power densities, owing to its extensive reactive area and surface-induced pseudo-capacitance. Here, a novel synergistic strategy for fortifying lithium storage capability is first proposed, by in-situ anchoring BaTiO3 ferroelectric nanoparticles on few-layered Ti3C2Tx nanosheets (BT/f-Ti3C2Tx) using a hydrothermal method. The uniform BaTiO3 nanoparticles effectively prevent the restacking of Ti3C2Tx nanosheets, successfully deplete metastable Ti atoms, and intriguingly form a thin and well-adhered solid electrolyte interface layer, enhancing the aggregation-resistant, oxidation-resistant, and electrochemical properties of Ti3C2Tx. Simultaneously, the internal electric fields, originating from the spontaneous polarization of BaTiO3 ferroelectric nanoparticles, can augment the adsorption of Li+, boosting the lithium storage capacity and reaction kinetics. The resulting composite electrode displays a remarkable charge capacity of 84 mAh g−1 at 10 A g−1, almost five times that of pristine Ti3C2Tx electrode. The excellent rate performance and cyclability make BT/f-Ti3C2Tx composites highly attractive for LIBs. Furthermore, this synthetic approach presented here is scalable and can be extended to other Ti-based materials. This strategy is expected to underscore the considerable potential of ferroelectric composites for integration into high-performance LIBs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米铁电的力量:用于增强锂存储的 BaTiO3/MXene(Ti3C2Tx)复合材料
二维 Ti3C2Tx MXene 具有广泛的反应面积和表面诱导的假电容,是先进锂离子电池 (LIB) 理想的电极材料,可用于追求高能量和高功率密度。在此,我们首次提出了一种增强锂存储能力的新型协同策略,即利用水热法在少层 Ti3C2Tx 纳米片(BT/f-Ti3C2Tx)上原位锚定 BaTiO3 铁电纳米粒子。均匀的 BaTiO3 纳米粒子有效地阻止了 Ti3C2Tx 纳米片的重新堆积,成功地耗尽了逸散的 Ti 原子,并奇妙地形成了一层薄而附着良好的固体电解质界面层,增强了 Ti3C2Tx 的抗聚集、抗氧化和电化学性能。同时,BaTiO3 铁电纳米粒子自发极化产生的内电场能增强对 Li+ 的吸附,提高锂存储容量和反应动力学性能。由此产生的复合电极在 10 A g-1 的条件下显示出 84 mAh g-1 的显著电荷容量,几乎是原始 Ti3C2Tx 电极的五倍。BT/f-Ti3C2Tx 复合材料具有优异的速率性能和循环能力,因此在 LIB 方面具有很强的吸引力。此外,本文介绍的合成方法具有可扩展性,可扩展到其他钛基材料。这一策略有望凸显铁电复合材料集成到高性能锂离子电池中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Spatial Confinement Effect of Mineral‐Based Colloid Electrolyte Enables Stable Interface Reaction for Aqueous Zinc–Manganese Batteries Covalent Organic Framework Encapsulating Layered Oxide Perovskite for Efficient Photosynthesis of H2O2 Dimeric Acceptors Using Different Central Linkers to Manipulate Electronic and Morphological Properties Grain Boundary Engineering Enhances the Thermoelectric Properties of Y2Te3 Crystalline‐Amorphous Interface‐Triggered Electron Redistribution on Copper(II) Sulfide@Metal (Ni, Co, and Fe) Oxyhydroxides for Ultra‐Efficient Overall Water/Seawater Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1