Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-11-06 DOI:10.1016/j.matt.2024.06.050
{"title":"Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing","authors":"","doi":"10.1016/j.matt.2024.06.050","DOIUrl":null,"url":null,"abstract":"<div><div>Machine vision enables machines to extract rich information from image or video data and make intelligent decisions. However, approaches using artificial synapse hardware systems significantly limit the real-time and accuracy in machine vision segmentation amid complex environments. Addressing this, we propose a novel three-terminal adaptive artificial-light-emitting synapse (AALS) capable of photoelectric double output along with adaptive behavior. The device uses silver nanowires (AgNWs) as polar conductive bridges to reduce reliance on transparent electrodes, while polyvinyl alcohol (PVA) dielectric layers adaptively modulate charge carrier concentrations in conductive channels. Additionally, we have designed an adaptive parallel neural network (APNN) and applied it to autonomous driving image processing. This innovation significantly reduces adaptation time and notably enhances mean pixel accuracy (MPA) for semantic segmentation under overexposure and low-light conditions by 142.2% and 304.4%, respectively. Therefore, this work introduces new strategies for advanced adaptive vision, promising significant potential in intelligent driving and neuromorphic computing.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259023852400393X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine vision enables machines to extract rich information from image or video data and make intelligent decisions. However, approaches using artificial synapse hardware systems significantly limit the real-time and accuracy in machine vision segmentation amid complex environments. Addressing this, we propose a novel three-terminal adaptive artificial-light-emitting synapse (AALS) capable of photoelectric double output along with adaptive behavior. The device uses silver nanowires (AgNWs) as polar conductive bridges to reduce reliance on transparent electrodes, while polyvinyl alcohol (PVA) dielectric layers adaptively modulate charge carrier concentrations in conductive channels. Additionally, we have designed an adaptive parallel neural network (APNN) and applied it to autonomous driving image processing. This innovation significantly reduces adaptation time and notably enhances mean pixel accuracy (MPA) for semantic segmentation under overexposure and low-light conditions by 142.2% and 304.4%, respectively. Therefore, this work introduces new strategies for advanced adaptive vision, promising significant potential in intelligent driving and neuromorphic computing.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有主动自适应光电输出的三端量子点发光突触,用于复杂图像处理/并行计算
机器视觉使机器能够从图像或视频数据中提取丰富的信息并做出智能决策。然而,使用人工突触硬件系统的方法大大限制了复杂环境中机器视觉分割的实时性和准确性。针对这一问题,我们提出了一种新型三端自适应人工发光突触(AALS),该突触具有光电双输出和自适应行为。该装置使用银纳米线(AgNWs)作为极性导电桥,以减少对透明电极的依赖,而聚乙烯醇(PVA)电介质层可自适应调节导电通道中的电荷载流子浓度。此外,我们还设计了一种自适应并行神经网络(APNN),并将其应用于自动驾驶图像处理。这一创新大大缩短了适应时间,并显著提高了过曝和弱光条件下语义分割的平均像素精度(MPA),分别提高了 142.2% 和 304.4%。因此,这项工作为先进的自适应视觉引入了新策略,有望在智能驾驶和神经形态计算领域大显身手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Soft bio-metamaterials with high acoustic transparency and gradient refractive index for tunable acoustic beamformer Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing Direct observation of autonomous self-healing in silver Manipulating cation-anion coordination in fire-retardant electrolytes to enable high-areal-capacity fluoride conversion batteries Cerium-based halide perovskite derivatives: A promising alternative for lead-free narrowband UV photodetection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1