Chemical Vapor Deposition Toward Efficient Bimetallic Atomically Dispersed Oxygen Reduction Catalysts.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-11-01 Epub Date: 2024-08-06 DOI:10.1002/marc.202400442
Xudong Jia, Bolong Yang, Qian Cheng, Xueli Li, Zhonghua Xiang
{"title":"Chemical Vapor Deposition Toward Efficient Bimetallic Atomically Dispersed Oxygen Reduction Catalysts.","authors":"Xudong Jia, Bolong Yang, Qian Cheng, Xueli Li, Zhonghua Xiang","doi":"10.1002/marc.202400442","DOIUrl":null,"url":null,"abstract":"<p><p>Non-precious metal-based nitrogen-doped carbon (M-Nx/C) shows great potential as a substitute for precious metal Pt-based catalysts. However, the conventional pyrolytic methods for forming M-Nx/C active sites are prone to issues such as the lack of synergistic interactions among bimetallic atoms and the potential encasement of active sites, leading to compromised catalytic efficiency and hindered mass transfer. In this work, a highly active FeCo-N-C@U-AC electrocatalyst is developed with a high density of active sites, adequate exposure of catalytic sites, and robust mass transfer capability using the chemical vapor-phase deposition (CVD) technique. The resulting catalyst demonstrates impressive oxygen reduction reaction (ORR) catalytic performance and stability, with half-wave potentials of 0.820 V (0.1 M HClO<sub>4</sub>) and 0.911 V (0.1 M KOH), respectively. It also exhibits significantly enhanced stability, retaining 93.25% and 98.38% of current after continuous 50 000 s of durability testing, surpassing the retention rates of Pt/C (80.31% in HClO<sub>4</sub> and 84.96% in KOH electrolytes). Notably, when employed as a cathode catalyst in proton exchange membrane fuel cells (PEMFCs) and zinc-air flow batteries (ZAFBs), the FeCo-N-C@U-AC catalyst delivers peak power densities of 859 and 162 mW·cm<sup>-2</sup>, respectively, showcasing competitive performance comparable to benchmark Pt/C.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400442","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Non-precious metal-based nitrogen-doped carbon (M-Nx/C) shows great potential as a substitute for precious metal Pt-based catalysts. However, the conventional pyrolytic methods for forming M-Nx/C active sites are prone to issues such as the lack of synergistic interactions among bimetallic atoms and the potential encasement of active sites, leading to compromised catalytic efficiency and hindered mass transfer. In this work, a highly active FeCo-N-C@U-AC electrocatalyst is developed with a high density of active sites, adequate exposure of catalytic sites, and robust mass transfer capability using the chemical vapor-phase deposition (CVD) technique. The resulting catalyst demonstrates impressive oxygen reduction reaction (ORR) catalytic performance and stability, with half-wave potentials of 0.820 V (0.1 M HClO4) and 0.911 V (0.1 M KOH), respectively. It also exhibits significantly enhanced stability, retaining 93.25% and 98.38% of current after continuous 50 000 s of durability testing, surpassing the retention rates of Pt/C (80.31% in HClO4 and 84.96% in KOH electrolytes). Notably, when employed as a cathode catalyst in proton exchange membrane fuel cells (PEMFCs) and zinc-air flow batteries (ZAFBs), the FeCo-N-C@U-AC catalyst delivers peak power densities of 859 and 162 mW·cm-2, respectively, showcasing competitive performance comparable to benchmark Pt/C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学气相沉积实现高效双金属原子分散氧还原催化剂
非贵金属掺氮碳(M-Nx/C)作为贵金属铂催化剂的替代品具有巨大潜力。然而,传统的热解方法在形成 M-Nx/C 活性位点时容易出现一些问题,如双金属原子之间缺乏协同作用以及活性位点可能被包裹,从而导致催化效率降低和传质受阻。在这项研究中,利用化学气相沉积(CVD)技术开发了一种高活性的 FeCo-N-C@U-AC电催化剂,它具有高密度的活性位点、充分的催化位点暴露和强大的传质能力。催化剂的半波电位分别为 0.820 V(0.1 M HClO4)和 0.911 V(0.1 M KOH),氧还原反应(ORR)催化性能和稳定性令人印象深刻。它的稳定性也明显增强,在连续 50 000 秒的耐久性测试后,电流保持率分别为 93.25% 和 98.38%,超过了 Pt/C 的保持率(在 HClO4 电解质中为 80.31%,在 KOH 电解质中为 84.96%)。值得注意的是,在质子交换膜燃料电池(PEMFC)和锌-空气流动电池(ZAFB)中用作阴极催化剂时,FeCo-N-C@U-AC 催化剂的峰值功率密度分别为 859 mW-cm-2 和 162 mW-cm-2,显示出与基准 Pt/C 相媲美的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Surface Engineering of Polymeric Colloidal Crystals by Temperature - Pressure Annealing. Uniform Polymer Microspheres by Photoinduced Metal-Free Atom Transfer Radical Precipitation Polymerization. Varying the Core Topology in All-Glycidol Hyperbranched Polyglycerols: Synthesis and Physical Characterization. α-Trifluoromethylated Quinolines as Safe and Storable PET-Donor for Radical Polymerizations. Linker Group Fluorination Boosts Photovoltaic Performance of Branch-Connected Dimerized Acceptors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1