{"title":"Transcriptome sequencing reveals inflammation and macrophage heterogeneity in subacromial bursa from degenerative shoulder disorders.","authors":"Jiabao Ju, Mingtai Ma, Yichong Zhang, Zhentao Ding, Pingping Lin, Jianhai Chen","doi":"10.1080/03008207.2024.2386548","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to investigate the transcriptomic alterations that occur in the subacromial bursa (SAB) following degenerative or traumatic shoulder diseases.</p><p><strong>Materials and methods: </strong>RNA sequencing was employed to evaluate the transcriptomic alterations of the SAB in individuals afflicted with degenerative rotator cuff tear (RCT), traumatic RCT and proximal humerus fracture (PHF). To gain insights into the biological significance of differentially expressed genes (DEGs), we conducted an enrichment analysis utilizing Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We further utilized single-cell RNA sequencing datasets of SAB from a recently published study to explore the associated cellular dynamics and alterations.</p><p><strong>Results: </strong>We detected 1,790 up-regulated and 1,964 down-regulated DEGs between degenerative RCT and PHF, 2,085 up-regulated and 1,919 down-regulated DEGs between degenerative RCT and traumatic RCT, and 20 up-regulated and 12 down-regulated DEGs between traumatic RCT and PHF. Given the similar expression pattern between traumatic RCT and PHF, they were integrated as the traumatic group. In comparison with the traumatic group, 1,983 up-regulated and 2,205 down-regulated DEGs were detected in degenerative SAB. Enrichment analysis of up-regulated DEGs uncovered an elevated inflammatory and immunologic responses in degenerative SAB. Single-cell transcriptomic analysis revealed macrophage represented the immune cell with the most DEGs between the degenerative and traumatic RCT.</p><p><strong>Conclusion: </strong>Our results revealed that the SAB in degenerative RCT exhibited a different transcriptional signature compared to that in traumatic RCT, and enrichment analysis showed immunologic and inflammatory activations. Macrophages may play a fundamental role in this process.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"383-396"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2024.2386548","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We aimed to investigate the transcriptomic alterations that occur in the subacromial bursa (SAB) following degenerative or traumatic shoulder diseases.
Materials and methods: RNA sequencing was employed to evaluate the transcriptomic alterations of the SAB in individuals afflicted with degenerative rotator cuff tear (RCT), traumatic RCT and proximal humerus fracture (PHF). To gain insights into the biological significance of differentially expressed genes (DEGs), we conducted an enrichment analysis utilizing Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We further utilized single-cell RNA sequencing datasets of SAB from a recently published study to explore the associated cellular dynamics and alterations.
Results: We detected 1,790 up-regulated and 1,964 down-regulated DEGs between degenerative RCT and PHF, 2,085 up-regulated and 1,919 down-regulated DEGs between degenerative RCT and traumatic RCT, and 20 up-regulated and 12 down-regulated DEGs between traumatic RCT and PHF. Given the similar expression pattern between traumatic RCT and PHF, they were integrated as the traumatic group. In comparison with the traumatic group, 1,983 up-regulated and 2,205 down-regulated DEGs were detected in degenerative SAB. Enrichment analysis of up-regulated DEGs uncovered an elevated inflammatory and immunologic responses in degenerative SAB. Single-cell transcriptomic analysis revealed macrophage represented the immune cell with the most DEGs between the degenerative and traumatic RCT.
Conclusion: Our results revealed that the SAB in degenerative RCT exhibited a different transcriptional signature compared to that in traumatic RCT, and enrichment analysis showed immunologic and inflammatory activations. Macrophages may play a fundamental role in this process.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.