Pub Date : 2024-11-14DOI: 10.1080/03008207.2024.2425867
Katie J Sikes, Kendra M Andrie, Sara Wist, Nikhil Verma, Adam B Yanke, Kelly S Santangelo, David D Frisbie, Brian J Cole
Purpose/aim: Metabolic disorders are risk factors for rotator cuff injuries, which suggests that the rotator cuff is sensitive to local metabolic fluctuations. However, the link between the metabolic microenvironment and pathologic features of acute tear versus chronic degeneration is currently unknown. The overarching goal of this study was to evaluate alterations in tendon metabolite profiles following acute tear or chronic degeneration of the rotator cuff. We hypothesized that injury types (acute tear vs. chronic degeneration) would result in distinct metabolite profiles relative to clinically unaffected tendon controls.
Materials and methods: We utilized untargeted metabolomics to identify pathways that were altered at the time of rotator cuff repair (RCR; acute tear) or reverse total shoulder arthroplasty (rTSA; chronic degeneration) relative to total shoulder arthroplasty controls (TSA; tendon clinically unaffected).
Results: Acute tears to the rotator cuff were associated with an overall decrease in tendon metabolites. This global decrease was primarily associated with glycolic acid and decreased tricarboxylic acid (TCA) cycle activity. Conversely, chronic tendon specimens from patients undergoing rTSA showed an overall increase in metabolites. Most notably, chronic injury was associated with increased levels of multiple amino acids including alanine, aspartate, lysine, and proline.
Conclusions: Overall, this study demonstrates that distinct metabolite profiles are associated with injury types, and that therapeutic strategies should address both cellular and matrix components regardless of injury induction. The specific pathways identified paired with validated, established, treatment methods may serve as novel therapeutic targets for patients who suffer from rotator cuff injuries.
{"title":"Acute tear versus chronic-degenerated rotator cuff pathologies are associated with divergent tendon metabolite profiles.","authors":"Katie J Sikes, Kendra M Andrie, Sara Wist, Nikhil Verma, Adam B Yanke, Kelly S Santangelo, David D Frisbie, Brian J Cole","doi":"10.1080/03008207.2024.2425867","DOIUrl":"https://doi.org/10.1080/03008207.2024.2425867","url":null,"abstract":"<p><strong>Purpose/aim: </strong>Metabolic disorders are risk factors for rotator cuff injuries, which suggests that the rotator cuff is sensitive to local metabolic fluctuations. However, the link between the metabolic microenvironment and pathologic features of acute tear versus chronic degeneration is currently unknown. The overarching goal of this study was to evaluate alterations in tendon metabolite profiles following acute tear or chronic degeneration of the rotator cuff. We hypothesized that injury types (acute tear vs. chronic degeneration) would result in distinct metabolite profiles relative to clinically unaffected tendon controls.</p><p><strong>Materials and methods: </strong>We utilized untargeted metabolomics to identify pathways that were altered at the time of rotator cuff repair (RCR; acute tear) or reverse total shoulder arthroplasty (rTSA; chronic degeneration) relative to total shoulder arthroplasty controls (TSA; tendon clinically unaffected).</p><p><strong>Results: </strong>Acute tears to the rotator cuff were associated with an overall decrease in tendon metabolites. This global decrease was primarily associated with glycolic acid and decreased tricarboxylic acid (TCA) cycle activity. Conversely, chronic tendon specimens from patients undergoing rTSA showed an overall increase in metabolites. Most notably, chronic injury was associated with increased levels of multiple amino acids including alanine, aspartate, lysine, and proline.</p><p><strong>Conclusions: </strong>Overall, this study demonstrates that distinct metabolite profiles are associated with injury types, and that therapeutic strategies should address both cellular and matrix components regardless of injury induction. The specific pathways identified paired with validated, established, treatment methods may serve as novel therapeutic targets for patients who suffer from rotator cuff injuries.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-14"},"PeriodicalIF":2.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Checkpoint kinase 2 (CHEK2) and its regulated tumor protein p53 (TP53) have been correlated with osteogenic differentiation of osteoblast-like cells. Based on bioinformatics predictions, this study aims to investigate the effect of the CHEK2/TP53 axis on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and to explore the regulatory mechanism.
Methods: PDLSCs were isolated from human impacted wisdom teeth, and they were cultured in normal medium (NM) or osteogenic medium (OM). Protein levels of CHEK2 and TP53 were examined using western blot analysis. Osteogenic differentiation ability of PDLSCs was analyzed by measuring marker proteins (RUNX2, OCN, and OSX), ALP activity, and ALP staining. Molecular interaction between NEDD4 like E3 ubiquitin protein ligase (NEDD4L) and CHEK2 was examined by ubiquitination and co-immunoprecipitation assays. Gain- and loss-of function assays of NEDD4L, CHEK2, and TP53 were performed to analyze their function in osteogenic differentiation of PDLSCs. A rat model of mandibular bone defect was generated for in vivo validation.
Results: NEDD4L was upregulated, while CHEK2 and TP53 were downregulated in PDLSCs cultured in OM. CHEK2 protected TP53 from degradation, while NEDD4L reduced CHEK2 protein level by ubiquitination modification. NEDD4L silencing reduced osteogenic differentiation ability of PDLSCs both in vitro and in vivo, which was restored by CHEK2 silencing. By contrast, CHEK2 overexpression blocked the osteogenic differentiation of PDLSCs in vitro.
Conclusion: This study demonstrates that NEDD4L affects protein stability of the CHEK2/TP53 axis through ubiquitination modification, thus increasing osteogenic differentiation of PDLSCs.
背景:检查点激酶2(CHEK2)及其调控的肿瘤蛋白p53(TP53)与成骨细胞样细胞的成骨分化相关。基于生物信息学预测,本研究旨在探讨CHEK2/TP53轴对牙周韧带干细胞(PDLSCs)成骨分化的影响,并探索其调控机制:方法:从人类阻生智齿中分离出牙周韧带干细胞(PDLSCs),在正常培养基(NM)或成骨培养基(OM)中培养。采用Western印迹分析检测CHEK2和TP53的蛋白水平。通过测量标记蛋白(RUNX2、OCN和OSX)、ALP活性和ALP染色分析了PDLSCs的成骨分化能力。通过泛素化和共免疫沉淀实验检测了NEDD4 like E3泛素蛋白连接酶(NEDD4L)和CHEK2之间的分子相互作用。对NEDD4L、CHEK2和TP53进行了功能增益和缺失试验,以分析它们在PDLSCs成骨分化中的功能。为进行体内验证,制作了大鼠下颌骨缺损模型:结果:在OM中培养的PDLSCs中,NEDD4L上调,而CHEK2和TP53下调。CHEK2 保护 TP53 免受降解,而 NEDD4L 则通过泛素化修饰降低 CHEK2 蛋白水平。沉默NEDD4L会降低PDLSCs在体外和体内的成骨分化能力,而沉默CHEK2则可恢复这种能力。相比之下,CHEK2过表达会阻碍PDLSCs的体外成骨分化:本研究表明,NEDD4L通过泛素化修饰影响了CHEK2/TP53轴的蛋白稳定性,从而提高了PDLSCs的成骨分化能力。
{"title":"NEDD4L affects stability of the CHEK2/TP53 axis through ubiquitination modification to enhance osteogenic differentiation of periodontal ligament stem cells.","authors":"Wenyue Hou, Changsheng Sun, Xue Han, Mingyu Fan, Wenjuan Qiao","doi":"10.1080/03008207.2024.2406794","DOIUrl":"https://doi.org/10.1080/03008207.2024.2406794","url":null,"abstract":"<p><strong>Background: </strong>Checkpoint kinase 2 (CHEK2) and its regulated tumor protein p53 (TP53) have been correlated with osteogenic differentiation of osteoblast-like cells. Based on bioinformatics predictions, this study aims to investigate the effect of the CHEK2/TP53 axis on osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and to explore the regulatory mechanism.</p><p><strong>Methods: </strong>PDLSCs were isolated from human impacted wisdom teeth, and they were cultured in normal medium (NM) or osteogenic medium (OM). Protein levels of CHEK2 and TP53 were examined using western blot analysis. Osteogenic differentiation ability of PDLSCs was analyzed by measuring marker proteins (RUNX2, OCN, and OSX), ALP activity, and ALP staining. Molecular interaction between NEDD4 like E3 ubiquitin protein ligase (NEDD4L) and CHEK2 was examined by ubiquitination and co-immunoprecipitation assays. Gain- and loss-of function assays of NEDD4L, CHEK2, and TP53 were performed to analyze their function in osteogenic differentiation of PDLSCs. A rat model of mandibular bone defect was generated for <i>in vivo</i> validation.</p><p><strong>Results: </strong>NEDD4L was upregulated, while CHEK2 and TP53 were downregulated in PDLSCs cultured in OM. CHEK2 protected TP53 from degradation, while NEDD4L reduced CHEK2 protein level by ubiquitination modification. NEDD4L silencing reduced osteogenic differentiation ability of PDLSCs both <i>in vitro</i> and <i>in vivo</i>, which was restored by CHEK2 silencing. By contrast, CHEK2 overexpression blocked the osteogenic differentiation of PDLSCs <i>in vitro</i>.</p><p><strong>Conclusion: </strong>This study demonstrates that NEDD4L affects protein stability of the CHEK2/TP53 axis through ubiquitination modification, thus increasing osteogenic differentiation of PDLSCs.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-14"},"PeriodicalIF":2.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1080/03008207.2024.2409751
Samuel Ka-Kin Ling, Zuru Liang, Pauline Po Yee Lui
Aims: Obesity increases tendinopathy's risk, but its mechanisms remain unclear. This study examined the effect of high-fat diet (HFD)-induced obesity on the outcomes and inflammation of collagenase-induced (CI) tendon injury.
Methods: Mice were fed with standard chow (SC) or HFD for 12 weeks. Bacterial collagenase I or saline was injected over the patellar tendons of each mouse. At weeks 2 and 8 post-injection, the patellar tendons were harvested for histology, immunohistochemical staining, and gait analysis. The difference (Δ) of limb-idleness index (LII) at the time of post-injury and pre-injury states was calculated. Biomechanical test of tendons was also performed at week 8 post-injection.
Results: HFD aggravated CI tendon injury with an increase in vascularity and cellularity compared to SC treatment. The histopathological score (week 2: p = 0.025; week 8: p = 0.013) and ΔLII (week 2: p = 0.012; week 8: p = 0.005) were significantly higher in the HFD group compared to those in the SC group after CI tendon injury. Stiffness (saline: p = 0.003; CI: p = 0.010), ultimate stress (saline: p < 0.001; CI: p = 0.006), and Young's modulus (saline: p = 0.017; CI: p = 0.007) were significantly lower in the HFD group compared to the SC group at week 8 after saline or collagenase injection. HFD induced higher expression of IL-1β (week 2: p = 0.010; week 8: p = 0.025) and MMP-1 (week 2: p = 0.010; week 8: p = 0.004) compared to SC treatment after CI tendon injury at both time points.
Conclusions: HFD-induced obesity exacerbated histopathological, functional, and biomechanical changes in the CI tendon injury model, which was associated with an upregulation of IL-1β and MMP-1.
{"title":"High-fat diet-induced obesity exacerbated collagenase-induced tendon injury with upregulation of interleukin-1beta and matrix metalloproteinase-1.","authors":"Samuel Ka-Kin Ling, Zuru Liang, Pauline Po Yee Lui","doi":"10.1080/03008207.2024.2409751","DOIUrl":"https://doi.org/10.1080/03008207.2024.2409751","url":null,"abstract":"<p><strong>Aims: </strong>Obesity increases tendinopathy's risk, but its mechanisms remain unclear. This study examined the effect of high-fat diet (HFD)-induced obesity on the outcomes and inflammation of collagenase-induced (CI) tendon injury.</p><p><strong>Methods: </strong>Mice were fed with standard chow (SC) or HFD for 12 weeks. Bacterial collagenase I or saline was injected over the patellar tendons of each mouse. At weeks 2 and 8 post-injection, the patellar tendons were harvested for histology, immunohistochemical staining, and gait analysis. The difference (Δ) of limb-idleness index (LII) at the time of post-injury and pre-injury states was calculated. Biomechanical test of tendons was also performed at week 8 post-injection.</p><p><strong>Results: </strong>HFD aggravated CI tendon injury with an increase in vascularity and cellularity compared to SC treatment. The histopathological score (week 2: <i>p</i> = 0.025; week 8: <i>p</i> = 0.013) and ΔLII (week 2: <i>p</i> = 0.012; week 8: <i>p</i> = 0.005) were significantly higher in the HFD group compared to those in the SC group after CI tendon injury. Stiffness (saline: <i>p</i> = 0.003; CI: <i>p</i> = 0.010), ultimate stress (saline: <i>p</i> < 0.001; CI: <i>p</i> = 0.006), and Young's modulus (saline: <i>p</i> = 0.017; CI: <i>p</i> = 0.007) were significantly lower in the HFD group compared to the SC group at week 8 after saline or collagenase injection. HFD induced higher expression of IL-1β (week 2: <i>p</i> = 0.010; week 8: <i>p</i> = 0.025) and MMP-1 (week 2: <i>p</i> = 0.010; week 8: <i>p</i> = 0.004) compared to SC treatment after CI tendon injury at both time points.</p><p><strong>Conclusions: </strong>HFD-induced obesity exacerbated histopathological, functional, and biomechanical changes in the CI tendon injury model, which was associated with an upregulation of IL-1β and MMP-1.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-11"},"PeriodicalIF":2.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1080/03008207.2024.2395287
Fei San Lee,Carlos J Cruz,Kyle D Allen,Rebecca A Wachs
PURPOSEGait disturbances are common in human low back pain (LBP) patients, suggesting potential applicability to rodent LBP models. This study aims to assess the influence of disc-associated LBP on gait in female Sprague Dawley rats and explore the utility of the open-source Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) suite as a potential alternative tool for spontaneous pain assessment in a previously established LBP model.MATERIALS AND METHODSDisc degeneration was surgically induced using a one-level disc scrape injury method, and microcomputed tomography was used to assess disc volume loss. After disc injury, axial hypersensitivity was evaluated using the grip strength assay, and an open field test was used to detect spontaneous pain-like behavior.RESULTSResults demonstrated that injured animals exhibit a significant loss in disc volume and reduced grip strength. Open field test did not detect significant differences in distance traveled between sham and injured animals. Concurrently, animals with injured discs did not display significant gait abnormalities in stance time imbalance, temporal symmetry, spatial symmetry, step width, stride length, and duty factor compared to sham. However, comparisons with reference values of normal gait reported in prior literature reveal that injured animals exhibit mild deviations in forelimb and hindlimb stance time imbalance, forelimb temporal symmetry, and hindlimb spatial symmetry at some time points.CONCLUSIONSThis study concludes that the disc injury may have very mild effects on gait in female rats within 9 weeks post-injury and recommends future in depth dynamic gait analysis and longer studies beyond 9 weeks to potentially detect gait.
{"title":"Gait assessment in a female rat Sprague Dawley model of disc-associated low back pain.","authors":"Fei San Lee,Carlos J Cruz,Kyle D Allen,Rebecca A Wachs","doi":"10.1080/03008207.2024.2395287","DOIUrl":"https://doi.org/10.1080/03008207.2024.2395287","url":null,"abstract":"PURPOSEGait disturbances are common in human low back pain (LBP) patients, suggesting potential applicability to rodent LBP models. This study aims to assess the influence of disc-associated LBP on gait in female Sprague Dawley rats and explore the utility of the open-source Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) suite as a potential alternative tool for spontaneous pain assessment in a previously established LBP model.MATERIALS AND METHODSDisc degeneration was surgically induced using a one-level disc scrape injury method, and microcomputed tomography was used to assess disc volume loss. After disc injury, axial hypersensitivity was evaluated using the grip strength assay, and an open field test was used to detect spontaneous pain-like behavior.RESULTSResults demonstrated that injured animals exhibit a significant loss in disc volume and reduced grip strength. Open field test did not detect significant differences in distance traveled between sham and injured animals. Concurrently, animals with injured discs did not display significant gait abnormalities in stance time imbalance, temporal symmetry, spatial symmetry, step width, stride length, and duty factor compared to sham. However, comparisons with reference values of normal gait reported in prior literature reveal that injured animals exhibit mild deviations in forelimb and hindlimb stance time imbalance, forelimb temporal symmetry, and hindlimb spatial symmetry at some time points.CONCLUSIONSThis study concludes that the disc injury may have very mild effects on gait in female rats within 9 weeks post-injury and recommends future in depth dynamic gait analysis and longer studies beyond 9 weeks to potentially detect gait.","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"37 1","pages":"1-14"},"PeriodicalIF":2.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-09DOI: 10.1080/03008207.2024.2397657
Khan Sharun, S Amitha Banu, Hussein M El-Husseiny, Laith Abualigah, A M Pawde, Kuldeep Dhama, Amarpal
Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.
{"title":"Exploring the applications of platelet-rich plasma in tissue engineering and regenerative medicine: evidence from goat and sheep experimental research.","authors":"Khan Sharun, S Amitha Banu, Hussein M El-Husseiny, Laith Abualigah, A M Pawde, Kuldeep Dhama, Amarpal","doi":"10.1080/03008207.2024.2397657","DOIUrl":"10.1080/03008207.2024.2397657","url":null,"abstract":"<p><p>Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"364-382"},"PeriodicalIF":2.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-14DOI: 10.1080/03008207.2024.2387729
Lei Huo, Quan-Bing Zhang, De-Ting Zhu, Kui Wang, Zun-Yu Du, Xue-Ming Li, Jing Mao, Xiu-Li Kan, Run Zhang, Yun Zhou
Purpose: Joint contracture is a common disease in clinical practice, joint bleeding is an important factor affecting the progression of joint contracture. This study aimed to explore the effect of extracorporeal shock wave on alleviating joint capsule fibrosis caused by intra-articular hemorrhage in rats.
Methods: Forty two SD rats were randomly divided into seven groups. Perform simple fixation and fixation after blood injection separately. Measure the range of motion of each group's knee joints and calculate the corresponding degree of contraction. Use HE staining and Masson staining to detect the number of anterior joint capsule cells and collagen deposition. Detection of changes in Wnt1, β-catenin protein expression in joint capsule using Western blotting.
Results: Compared to group C, the degree of knee joint contracture in M1 and M2 groups of rats increased, and collagen deposition, cell number and Wnt1, β-catenin protein expression also increased accordingly. Compared to M1 and M2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, β-catenin protein expression were decreased, and the degree of joint contracture in NR1 and NR2 groups showed no significant improvement. Compared to NR1 and NR2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, β-catenin protein expression were decreased.
Conclusions: Both rat models of knee joint contracture were successful, and joint bleeding can exacerbate joint contracture. Extracorporeal shock waves alleviate joint capsule fibrosis caused by intra-articular bleeding in rats.
{"title":"Preliminary study of extracorporeal shock wave alleviating joint capsule fibrosis caused by internal bleeding of knee joint in rats.","authors":"Lei Huo, Quan-Bing Zhang, De-Ting Zhu, Kui Wang, Zun-Yu Du, Xue-Ming Li, Jing Mao, Xiu-Li Kan, Run Zhang, Yun Zhou","doi":"10.1080/03008207.2024.2387729","DOIUrl":"10.1080/03008207.2024.2387729","url":null,"abstract":"<p><strong>Purpose: </strong>Joint contracture is a common disease in clinical practice, joint bleeding is an important factor affecting the progression of joint contracture. This study aimed to explore the effect of extracorporeal shock wave on alleviating joint capsule fibrosis caused by intra-articular hemorrhage in rats.</p><p><strong>Methods: </strong>Forty two SD rats were randomly divided into seven groups. Perform simple fixation and fixation after blood injection separately. Measure the range of motion of each group's knee joints and calculate the corresponding degree of contraction. Use HE staining and Masson staining to detect the number of anterior joint capsule cells and collagen deposition. Detection of changes in Wnt1, β-catenin protein expression in joint capsule using Western blotting.</p><p><strong>Results: </strong>Compared to group C, the degree of knee joint contracture in M1 and M2 groups of rats increased, and collagen deposition, cell number and Wnt1, β-catenin protein expression also increased accordingly. Compared to M1 and M2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, β-catenin protein expression were decreased, and the degree of joint contracture in NR1 and NR2 groups showed no significant improvement. Compared to NR1 and NR2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, β-catenin protein expression were decreased.</p><p><strong>Conclusions: </strong>Both rat models of knee joint contracture were successful, and joint bleeding can exacerbate joint contracture. Extracorporeal shock waves alleviate joint capsule fibrosis caused by intra-articular bleeding in rats.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"397-406"},"PeriodicalIF":2.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: We aimed to investigate the transcriptomic alterations that occur in the subacromial bursa (SAB) following degenerative or traumatic shoulder diseases.
Materials and methods: RNA sequencing was employed to evaluate the transcriptomic alterations of the SAB in individuals afflicted with degenerative rotator cuff tear (RCT), traumatic RCT and proximal humerus fracture (PHF). To gain insights into the biological significance of differentially expressed genes (DEGs), we conducted an enrichment analysis utilizing Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We further utilized single-cell RNA sequencing datasets of SAB from a recently published study to explore the associated cellular dynamics and alterations.
Results: We detected 1,790 up-regulated and 1,964 down-regulated DEGs between degenerative RCT and PHF, 2,085 up-regulated and 1,919 down-regulated DEGs between degenerative RCT and traumatic RCT, and 20 up-regulated and 12 down-regulated DEGs between traumatic RCT and PHF. Given the similar expression pattern between traumatic RCT and PHF, they were integrated as the traumatic group. In comparison with the traumatic group, 1,983 up-regulated and 2,205 down-regulated DEGs were detected in degenerative SAB. Enrichment analysis of up-regulated DEGs uncovered an elevated inflammatory and immunologic responses in degenerative SAB. Single-cell transcriptomic analysis revealed macrophage represented the immune cell with the most DEGs between the degenerative and traumatic RCT.
Conclusion: Our results revealed that the SAB in degenerative RCT exhibited a different transcriptional signature compared to that in traumatic RCT, and enrichment analysis showed immunologic and inflammatory activations. Macrophages may play a fundamental role in this process.
{"title":"Transcriptome sequencing reveals inflammation and macrophage heterogeneity in subacromial bursa from degenerative shoulder disorders.","authors":"Jiabao Ju, Mingtai Ma, Yichong Zhang, Zhentao Ding, Pingping Lin, Jianhai Chen","doi":"10.1080/03008207.2024.2386548","DOIUrl":"10.1080/03008207.2024.2386548","url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to investigate the transcriptomic alterations that occur in the subacromial bursa (SAB) following degenerative or traumatic shoulder diseases.</p><p><strong>Materials and methods: </strong>RNA sequencing was employed to evaluate the transcriptomic alterations of the SAB in individuals afflicted with degenerative rotator cuff tear (RCT), traumatic RCT and proximal humerus fracture (PHF). To gain insights into the biological significance of differentially expressed genes (DEGs), we conducted an enrichment analysis utilizing Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We further utilized single-cell RNA sequencing datasets of SAB from a recently published study to explore the associated cellular dynamics and alterations.</p><p><strong>Results: </strong>We detected 1,790 up-regulated and 1,964 down-regulated DEGs between degenerative RCT and PHF, 2,085 up-regulated and 1,919 down-regulated DEGs between degenerative RCT and traumatic RCT, and 20 up-regulated and 12 down-regulated DEGs between traumatic RCT and PHF. Given the similar expression pattern between traumatic RCT and PHF, they were integrated as the traumatic group. In comparison with the traumatic group, 1,983 up-regulated and 2,205 down-regulated DEGs were detected in degenerative SAB. Enrichment analysis of up-regulated DEGs uncovered an elevated inflammatory and immunologic responses in degenerative SAB. Single-cell transcriptomic analysis revealed macrophage represented the immune cell with the most DEGs between the degenerative and traumatic RCT.</p><p><strong>Conclusion: </strong>Our results revealed that the SAB in degenerative RCT exhibited a different transcriptional signature compared to that in traumatic RCT, and enrichment analysis showed immunologic and inflammatory activations. Macrophages may play a fundamental role in this process.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"383-396"},"PeriodicalIF":2.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Periodontal ligament cells (PDLCs) play a significant role in orthodontic force induced bone remodeling. However, the molecular mechanisms by which PDLCs respond to mechanical stimuli and influence osteoclastic activities remain unclear. This study aims to investigate the role of UCHL1, a key deubiquitinating enzyme involved in protein degradation and cellular responses, in force-treated PDLCs during orthodontic tooth movement (OTM).
Materials and methods: In this study, we conducted in vivo and in vitro experiments using human PDLCs and a rat model of OTM. Mechanical stress was applied to PDLCs, and UCHL1 expression was analyzed through quantitative real-time polymerase chain reaction (qPCR), Western blot, and immunofluorescence staining. UCHL1 knockdown was achieved using siRNA, and its effects on osteoclast differentiation were assessed. The role of the MAPK/ERK pathway was investigated using the MEK-specific inhibitor U0126. An animal model of OTM was established, and the impact of UCHL1 inhibitor-LDN57444 on OTM and osteoclastic activity was evaluated through micro-CT analysis, histological staining, and immunohistochemistry.
Results: Mechanical force induced UCHL1 expression in PDLCs during OTM. UCHL1 knockdown downregulated the RANKL/OPG ratio in PDLCs, affecting osteoclast differentiation. LDN57444 inhibited OTM and osteoclastic activity. UCHL1 activation correlated with ERK1/2 phosphorylation in force-treated PDLCs.
Conclusions: Mechanical force mediated UCHL1 activation in PDLCs promotes osteoclast differentiation via the ERK1/2 signaling pathway during OTM.
{"title":"Ubiquitin C-terminal hydrolase L1 activation in periodontal ligament cells mediates orthodontic tooth movement via the MAPK signaling pathway.","authors":"Fu Zheng, Feifei Wang, Tong Wu, Hongyi Tang, Huazhi Li, Xinyu Cui, Cuiying Li, Jiuhui Jiang","doi":"10.1080/03008207.2024.2395998","DOIUrl":"10.1080/03008207.2024.2395998","url":null,"abstract":"<p><strong>Purpose: </strong>Periodontal ligament cells (PDLCs) play a significant role in orthodontic force induced bone remodeling. However, the molecular mechanisms by which PDLCs respond to mechanical stimuli and influence osteoclastic activities remain unclear. This study aims to investigate the role of UCHL1, a key deubiquitinating enzyme involved in protein degradation and cellular responses, in force-treated PDLCs during orthodontic tooth movement (OTM).</p><p><strong>Materials and methods: </strong>In this study, we conducted <i>in vivo</i> and <i>in vitro</i> experiments using human PDLCs and a rat model of OTM. Mechanical stress was applied to PDLCs, and UCHL1 expression was analyzed through quantitative real-time polymerase chain reaction (qPCR), Western blot, and immunofluorescence staining. UCHL1 knockdown was achieved using siRNA, and its effects on osteoclast differentiation were assessed. The role of the MAPK/ERK pathway was investigated using the MEK-specific inhibitor U0126. An animal model of OTM was established, and the impact of UCHL1 inhibitor-LDN57444 on OTM and osteoclastic activity was evaluated through micro-CT analysis, histological staining, and immunohistochemistry.</p><p><strong>Results: </strong>Mechanical force induced UCHL1 expression in PDLCs during OTM. UCHL1 knockdown downregulated the RANKL/OPG ratio in PDLCs, affecting osteoclast differentiation. LDN57444 inhibited OTM and osteoclastic activity. UCHL1 activation correlated with ERK1/2 phosphorylation in force-treated PDLCs.</p><p><strong>Conclusions: </strong>Mechanical force mediated UCHL1 activation in PDLCs promotes osteoclast differentiation via the ERK1/2 signaling pathway during OTM.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"421-432"},"PeriodicalIF":2.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-19DOI: 10.1080/03008207.2024.2396002
Mohammad Tollabi, Zahra Poursalehi, Parichehr Mehrafshar, Rayhaneh Bakhtiari, Vahid Hosseinpour Sarmadi, Lobat Tayebi, Seyed Mohammad Amin Haramshahi
Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.
{"title":"Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration.","authors":"Mohammad Tollabi, Zahra Poursalehi, Parichehr Mehrafshar, Rayhaneh Bakhtiari, Vahid Hosseinpour Sarmadi, Lobat Tayebi, Seyed Mohammad Amin Haramshahi","doi":"10.1080/03008207.2024.2396002","DOIUrl":"10.1080/03008207.2024.2396002","url":null,"abstract":"<p><p>Features of the extracellular matrix, along with biochemical factors, have a momentous impress in making genes on and/or off. The interaction of cells and the extracellular matrix is mediated by integrins. Therefore, these molecules have pivotal roles in regulating cell behaviors. Integrins include a group of molecules with a variety of characteristics that can affect different molecular cascades. Considering the importance of these molecules in tissue regeneration after injury, it is necessary to know well the integrins involved in the process of connecting cells to the extracellular matrix in each tissue.With the increase in life expectancy, bone tissue engineering has received more attention from researchers. Integrins are critical components in osteoblast differentiation, survival, and bone mechanotransduction. During osteogenic differentiation in stem cells, specific integrins facilitate multiple signaling pathways through their cytoplasmic domain, leading to the induction of osteogenic differentiation. Also, due to the importance of using biomaterials in bone tissue engineering, efforts have been made to design and use biomaterials with maximum interaction with integrins. Notably, the use of RGD peptide or fibronectin for surface modification is a well-established and commonly employed approach to manipulate integrin activity.This review article looks into integrins' role in bone development and regeneration. It then goes on to explore the complex mechanisms by which integrins contribute to these processes. In addition, this review discusses the use of natural and synthetic biomaterials that target integrins to promote bone regeneration.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"343-363"},"PeriodicalIF":2.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-23DOI: 10.1080/03008207.2024.2356586
Robin Evrard, Maxendre Feyens, Julie Manon, Benoit Lengelé, Olivier Cartiaux, Thomas Schubert
Introduction: To mitigate the post-operative complication rates associated with massive bone allografts, tissue engineering techniques have been employed to decellularize entire bones through perfusion with a sequence of solvents. Mechanical assessment was performed in order to compare conventional massive bone allografts and perfusion/decellularized massive bone allografts.
Material and methods: Ten porcine femurs were included. Five were decellularized by perfusion. The remaining 5 were left untreated as the "control" group. Biomechanical testing was conducted on each bone, encompassing five different assessments: screw pull-out, 3-points bending, torsion, compression and Vickers indentation.
Results: Under the experimental conditions of this study, all five destructive tested variables (maximum force until screw pull-out, maximum elongation until screw pull-out, energy to pull out the screw, fracture resistance in flexion and maximum constrain of compression) were statistically significantly superior in the control group. All seven nondestructive variables (Young's modulus in flexion, Young's modulus in shear stress, Young's modulus in compression, Elastic conventional limit in compression, lengthening to rupture in compression, resilience in compression and Vickers Hardness) showed no significant difference.
Discussion: Descriptive statistical results suggest a tendency for the biomechanical characteristics of decellularized bone to decrease compared with the control group. However, statistical inferences demonstrated a slight significant superiority of the control group with destructive mechanical stresses. Nondestructive mechanical tests (within the elastic phase of Young's modulus) were not significantly different.
{"title":"Impact of NaOH based perfusion-decellularization protocol on mechanical resistance of structural bone allografts.","authors":"Robin Evrard, Maxendre Feyens, Julie Manon, Benoit Lengelé, Olivier Cartiaux, Thomas Schubert","doi":"10.1080/03008207.2024.2356586","DOIUrl":"10.1080/03008207.2024.2356586","url":null,"abstract":"<p><strong>Introduction: </strong>To mitigate the post-operative complication rates associated with massive bone allografts, tissue engineering techniques have been employed to decellularize entire bones through perfusion with a sequence of solvents. Mechanical assessment was performed in order to compare conventional massive bone allografts and perfusion/decellularized massive bone allografts.</p><p><strong>Material and methods: </strong>Ten porcine femurs were included. Five were decellularized by perfusion. The remaining 5 were left untreated as the \"control\" group. Biomechanical testing was conducted on each bone, encompassing five different assessments: screw pull-out, 3-points bending, torsion, compression and Vickers indentation.</p><p><strong>Results: </strong>Under the experimental conditions of this study, all five destructive tested variables (maximum force until screw pull-out, maximum elongation until screw pull-out, energy to pull out the screw, fracture resistance in flexion and maximum constrain of compression) were statistically significantly superior in the control group. All seven nondestructive variables (Young's modulus in flexion, Young's modulus in shear stress, Young's modulus in compression, Elastic conventional limit in compression, lengthening to rupture in compression, resilience in compression and Vickers Hardness) showed no significant difference.</p><p><strong>Discussion: </strong>Descriptive statistical results suggest a tendency for the biomechanical characteristics of decellularized bone to decrease compared with the control group. However, statistical inferences demonstrated a slight significant superiority of the control group with destructive mechanical stresses. Nondestructive mechanical tests (within the elastic phase of Young's modulus) were not significantly different.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"279-292"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}