Sarah van Boerdonk , Pia Saake , Alan Wanke , Ulla Neumann , Alga Zuccaro
{"title":"β-Glucan-binding proteins are key modulators of immunity and symbiosis in mutualistic plant–microbe interactions","authors":"Sarah van Boerdonk , Pia Saake , Alan Wanke , Ulla Neumann , Alga Zuccaro","doi":"10.1016/j.pbi.2024.102610","DOIUrl":null,"url":null,"abstract":"<div><p>In order to discriminate between detrimental, commensal, and beneficial microbes, plants rely on polysaccharides such as β-glucans, which are integral components of microbial and plant cell walls. The conversion of cell wall-associated β-glucan polymers into a specific outcome that affects plant-microbe interactions is mediated by hydrolytic and non-hydrolytic β-glucan-binding proteins. These proteins play crucial roles during microbial colonization: they influence the composition and resilience of host and microbial cell walls, regulate the homeostasis of apoplastic concentrations of β-glucan oligomers, and mediate β-glucan perception and signaling. This review outlines the dual roles of β-glucans and their binding proteins in plant immunity and symbiosis, highlighting recent discoveries on the role of β-glucan-binding proteins as modulators of immunity and as symbiosis receptors involved in the fine-tuning of microbial accommodation.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102610"},"PeriodicalIF":8.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001018/pdfft?md5=b8d7cf3dd465466dd82d90bcee0f34d7&pid=1-s2.0-S1369526624001018-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In order to discriminate between detrimental, commensal, and beneficial microbes, plants rely on polysaccharides such as β-glucans, which are integral components of microbial and plant cell walls. The conversion of cell wall-associated β-glucan polymers into a specific outcome that affects plant-microbe interactions is mediated by hydrolytic and non-hydrolytic β-glucan-binding proteins. These proteins play crucial roles during microbial colonization: they influence the composition and resilience of host and microbial cell walls, regulate the homeostasis of apoplastic concentrations of β-glucan oligomers, and mediate β-glucan perception and signaling. This review outlines the dual roles of β-glucans and their binding proteins in plant immunity and symbiosis, highlighting recent discoveries on the role of β-glucan-binding proteins as modulators of immunity and as symbiosis receptors involved in the fine-tuning of microbial accommodation.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.