Miguel Perea Brugal, Manuela Burbano Moscoso, Ainoa Nieto-Claudín, Sharon L Deem, David C Siddons, Rodrigo Caroca Cáceres
{"title":"The fungus Aphanoascella galapagosensis affects bacterial diversity of Galapagos giant tortoise carapaces.","authors":"Miguel Perea Brugal, Manuela Burbano Moscoso, Ainoa Nieto-Claudín, Sharon L Deem, David C Siddons, Rodrigo Caroca Cáceres","doi":"10.1093/jambio/lxae202","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to describe the bacterial microbiome associated with the carapace of three species of Galapagos giant tortoises (Chelonoidis porteri, Chelonoidis donfaustoi, and Chelonoidis vandenburghi) and determine the potential effect of the whitish lesions caused by the fungus Aphanoascella galapagosensis.</p><p><strong>Methods and results: </strong>We used Oxford Nanopore's MinION to evaluate the external bacterial microbiome associated with the carapaces from the aforementioned species. Taxonomic assignment was carried out by Bugseq and the bacterial communities were compared between carapaces with and without lesions using a NMDS with Bray-Curtis as the dissimilarity index. We found four genera of bacteria that were ubiquitous throughout all individuals, suggesting the presence of shared taxa. The results also displayed a significant difference in the microbiome between carapaces with and without lesions, and for species-carapace interaction, but not among species.</p><p><strong>Conclusions: </strong>This study establishes a baseline of the bacterial diversity of the carapace within three Galapagos giant tortoise species, showcasing the presence of a distinctive microbial community. Furthermore, our findings suggest a significant influence of the fungus Aphanoascella galapagosensis on the bacterial populations inhabiting the carapace of these reptiles.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae202","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This study aimed to describe the bacterial microbiome associated with the carapace of three species of Galapagos giant tortoises (Chelonoidis porteri, Chelonoidis donfaustoi, and Chelonoidis vandenburghi) and determine the potential effect of the whitish lesions caused by the fungus Aphanoascella galapagosensis.
Methods and results: We used Oxford Nanopore's MinION to evaluate the external bacterial microbiome associated with the carapaces from the aforementioned species. Taxonomic assignment was carried out by Bugseq and the bacterial communities were compared between carapaces with and without lesions using a NMDS with Bray-Curtis as the dissimilarity index. We found four genera of bacteria that were ubiquitous throughout all individuals, suggesting the presence of shared taxa. The results also displayed a significant difference in the microbiome between carapaces with and without lesions, and for species-carapace interaction, but not among species.
Conclusions: This study establishes a baseline of the bacterial diversity of the carapace within three Galapagos giant tortoise species, showcasing the presence of a distinctive microbial community. Furthermore, our findings suggest a significant influence of the fungus Aphanoascella galapagosensis on the bacterial populations inhabiting the carapace of these reptiles.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.