Exosomal miR-15a-5p from cardiomyocytes promotes myocardial fibrosis.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2025-03-01 Epub Date: 2024-08-07 DOI:10.1007/s11010-024-05080-3
Feng Cao, Zhe Li, Wenmao Ding, Chuan Qv, Hongyi Zhao
{"title":"Exosomal miR-15a-5p from cardiomyocytes promotes myocardial fibrosis.","authors":"Feng Cao, Zhe Li, Wenmao Ding, Chuan Qv, Hongyi Zhao","doi":"10.1007/s11010-024-05080-3","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of myofibroblasts is a key step in myocardial fibrosis, but the trigger for the transformation of cardiac fibroblasts into myofibroblasts remains not entirely clear. Exosomes play a key role between cardiomyocytes and cardiac fibroblasts. Here, we not only investigated the relationship between exosomes derived from angiotensin (Ang)-II-treated cardiomyocytes and cardiac fibroblasts, the underlying mechanisms were also explored. Ang-II-treated C57 male mice and mouse cardiac fibroblasts were employed for in vivo and in vitro experiments, respectively. Transmission electron microscopy nanoparticle tracking analysis, and western blot of CD9, CD63, CD81 were performed to identify exosomes; QRT-PCR was performed to detect miR-15a-5p expression; luciferase reporter assay was employed to determine the interaction between miR-15a-5p and dyrk2; western blot was performed to examine the protein levels of fibrosis markers; Counting Kit-8 was performed to determine cell viability; HE and Masson staining were performed to assess the pathological changes of myocardial tissues. MiR-15a-5p expression was found up-regulated in serum of myocardial fibrosis patients, serum and myocardial tissues of Ang-II-treated mice, and Ang-II-treated cardiomyocytes. Mechanically, exosomes from Ang-II-treated cardiomyocytes shuttled miR-15a-5p to cardiac fibroblasts, where miR-15a-5p dephosphorylated NFAT by targeting dyrk2 to promote cell viability and elevated the protein levels of α-smooth muscle actin, collagen type 1 α1 and collagen type 3 α1, thus promoting myocardial fibrosis. This study identified a novel molecular target for anti-fibrotic therapeutic interventions.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"1701-1713"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05080-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of myofibroblasts is a key step in myocardial fibrosis, but the trigger for the transformation of cardiac fibroblasts into myofibroblasts remains not entirely clear. Exosomes play a key role between cardiomyocytes and cardiac fibroblasts. Here, we not only investigated the relationship between exosomes derived from angiotensin (Ang)-II-treated cardiomyocytes and cardiac fibroblasts, the underlying mechanisms were also explored. Ang-II-treated C57 male mice and mouse cardiac fibroblasts were employed for in vivo and in vitro experiments, respectively. Transmission electron microscopy nanoparticle tracking analysis, and western blot of CD9, CD63, CD81 were performed to identify exosomes; QRT-PCR was performed to detect miR-15a-5p expression; luciferase reporter assay was employed to determine the interaction between miR-15a-5p and dyrk2; western blot was performed to examine the protein levels of fibrosis markers; Counting Kit-8 was performed to determine cell viability; HE and Masson staining were performed to assess the pathological changes of myocardial tissues. MiR-15a-5p expression was found up-regulated in serum of myocardial fibrosis patients, serum and myocardial tissues of Ang-II-treated mice, and Ang-II-treated cardiomyocytes. Mechanically, exosomes from Ang-II-treated cardiomyocytes shuttled miR-15a-5p to cardiac fibroblasts, where miR-15a-5p dephosphorylated NFAT by targeting dyrk2 to promote cell viability and elevated the protein levels of α-smooth muscle actin, collagen type 1 α1 and collagen type 3 α1, thus promoting myocardial fibrosis. This study identified a novel molecular target for anti-fibrotic therapeutic interventions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心肌细胞外泌体 miR-15a-5p 促进心肌纤维化
心肌成纤维细胞的出现是心肌纤维化的关键步骤,但心肌成纤维细胞转变为心肌成纤维细胞的触发因素仍不完全清楚。外泌体在心肌细胞和心肌成纤维细胞之间发挥着关键作用。在这里,我们不仅研究了从血管紧张素(Ang)-II 处理的心肌细胞和心成纤维细胞中提取的外泌体之间的关系,还探讨了其潜在的机制。实验分别采用 Ang-II 处理的 C57 雄性小鼠和小鼠心脏成纤维细胞进行体内和体外实验。透射电子显微镜纳米粒子追踪分析和CD9、CD63、CD81蛋白印迹检测外泌体;QRT-PCR检测miR-15a-5p的表达;荧光素酶报告实验确定miR-15a-5p与dyrk2的相互作用;Western印迹检测纤维化标志物的蛋白水平;计数试剂盒-8测定细胞活力;HE和Masson染色评估心肌组织的病理变化。结果发现,心肌纤维化患者血清、Ang-II处理小鼠血清和心肌组织以及Ang-II处理的心肌细胞中MiR-15a-5p的表达均上调。在机制上,来自 Ang-II 处理过的心肌细胞的外泌体将 miR-15a-5p 运送到心肌成纤维细胞,miR-15a-5p 通过靶向 dyrk2 使 NFAT 去磷酸化,促进细胞活力,并提高了 α 平滑肌肌动蛋白、1 型胶原 α1 和 3 型胶原 α1 的蛋白水平,从而促进了心肌纤维化。这项研究为抗纤维化治疗干预发现了一个新的分子靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
LncRNA BDNF-AS binds to DNMT1 to suppress angiogenesis in glioma by promoting NEDD4L-mediated YAP1 ubiquitination. Exploring exhaled volatile organic compounds as potential biomarkers in anti-MDA5 antibody-positive interstitial lung disease. Cardiomyocyte regeneration after infarction: changes, opportunities and challenges. Skin regenerative potential of hydrogel matrices incorporated with stem cell-derived extracellular vesicles enriched with MicroRNAs: a systematic review. The role of mitochondrial dysfunction in the protective effect of ginger derived extracellular vesicles on hepatic stellate cells against cytotoxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1