Gadolinium-Enhanced T2 FLAIR is an Imaging Biomarker of Radiation Necrosis and Tumor Progression in Patients with Brain Metastases.

Chris Heyn, Jonathan Bishop, Alan R Moody, Tony Kang, Erin Wong, Peter Howard, Pejman Maralani, Sean Symons, Bradley J MacIntosh, Julia Keith, Mary Jane Lim-Fat, James Perry, Sten Myrehaug, Jay Detsky, Chia-Lin Tseng, Hanbo Chen, Arjun Sahgal, Hany Soliman
{"title":"Gadolinium-Enhanced T2 FLAIR is an Imaging Biomarker of Radiation Necrosis and Tumor Progression in Patients with Brain Metastases.","authors":"Chris Heyn, Jonathan Bishop, Alan R Moody, Tony Kang, Erin Wong, Peter Howard, Pejman Maralani, Sean Symons, Bradley J MacIntosh, Julia Keith, Mary Jane Lim-Fat, James Perry, Sten Myrehaug, Jay Detsky, Chia-Lin Tseng, Hanbo Chen, Arjun Sahgal, Hany Soliman","doi":"10.3174/ajnr.A8431","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Differentiating radiation necrosis (RN) from tumor progression (TP) after radiation therapy for brain metastases is an important clinical problem requiring advanced imaging techniques that may not be widely available and are challenging to perform at multiple time points. The ability to leverage conventional MRI for this problem could have a meaningful clinical impact. The purpose of this study was to explore contrast-enhanced T2 FLAIR (T2FLAIRc) as a new imaging biomarker of RN and TP.</p><p><strong>Materials and methods: </strong>This single-institution retrospective study included patients with treated brain metastases undergoing DSC-MRI between January 2021 and June 2023. Reference standard assessment was based on histopathology or serial follow-up, including the results of DSC-MRI for a minimum of 6 months from the first DSC-MRI. The index test was implemented as part of the institutional brain tumor MRI protocol and preceded the first DSC-MRI. T2FLAIRc and gadolinium-enhanced T1 (T1c) MPRAGE signal were normalized against normal brain parenchyma and expressed as a <i>z</i> score. The mean signal intensity of enhancing disease for the RN and TP groups was compared using an unpaired <i>t</i> test. Receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) were derived by bootstrapping. The DeLong test was used to compare AUCs.</p><p><strong>Results: </strong>Fifty-six participants (mean age, 62 [SD, 12.7] years; 39 women; 28 with RN, 28 with TP) were evaluated. The index MRI was performed, on average, 73 [SD, 34] days before the first DSC-MRI. Significantly higher <i>z</i> scores were found for RN using T2FLAIRc (8.3 versus 5.8, <i>P</i> < .001) and T1c (4.1 versus 3.5, <i>P </i>= .02). The AUC for T2FLAIRc (0.83; 95% CI, 0.72-0.92) was greater than that for T1c (0.70; 95% CI, 0.56-0.83) (<i>P </i>= .04). The AUC of DSC-derived relative CBV (0.82; 95% CI, 0.70-0.93) was not significantly different from that of T2FLAIRc (<i>P </i>= .9).</p><p><strong>Conclusions: </strong>A higher normalized T1c and T2FLAIRc signal intensity was found for RN. In a univariable test, the mean T2FLAIRc signal intensity of enhancing voxels showed good discrimination performance for distinguishing RN from TP. The results of this work demonstrate the potential of T2FLAIRc as an imaging biomarker in the work-up of RN in patients with brain metastases.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Differentiating radiation necrosis (RN) from tumor progression (TP) after radiation therapy for brain metastases is an important clinical problem requiring advanced imaging techniques that may not be widely available and are challenging to perform at multiple time points. The ability to leverage conventional MRI for this problem could have a meaningful clinical impact. The purpose of this study was to explore contrast-enhanced T2 FLAIR (T2FLAIRc) as a new imaging biomarker of RN and TP.

Materials and methods: This single-institution retrospective study included patients with treated brain metastases undergoing DSC-MRI between January 2021 and June 2023. Reference standard assessment was based on histopathology or serial follow-up, including the results of DSC-MRI for a minimum of 6 months from the first DSC-MRI. The index test was implemented as part of the institutional brain tumor MRI protocol and preceded the first DSC-MRI. T2FLAIRc and gadolinium-enhanced T1 (T1c) MPRAGE signal were normalized against normal brain parenchyma and expressed as a z score. The mean signal intensity of enhancing disease for the RN and TP groups was compared using an unpaired t test. Receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) were derived by bootstrapping. The DeLong test was used to compare AUCs.

Results: Fifty-six participants (mean age, 62 [SD, 12.7] years; 39 women; 28 with RN, 28 with TP) were evaluated. The index MRI was performed, on average, 73 [SD, 34] days before the first DSC-MRI. Significantly higher z scores were found for RN using T2FLAIRc (8.3 versus 5.8, P < .001) and T1c (4.1 versus 3.5, P = .02). The AUC for T2FLAIRc (0.83; 95% CI, 0.72-0.92) was greater than that for T1c (0.70; 95% CI, 0.56-0.83) (P = .04). The AUC of DSC-derived relative CBV (0.82; 95% CI, 0.70-0.93) was not significantly different from that of T2FLAIRc (P = .9).

Conclusions: A higher normalized T1c and T2FLAIRc signal intensity was found for RN. In a univariable test, the mean T2FLAIRc signal intensity of enhancing voxels showed good discrimination performance for distinguishing RN from TP. The results of this work demonstrate the potential of T2FLAIRc as an imaging biomarker in the work-up of RN in patients with brain metastases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钆增强T2 FLAIR是脑转移瘤患者放射坏死和肿瘤进展的成像生物标记物
背景和目的:脑转移瘤放疗后的放射坏死(RN)和肿瘤进展(TP)的鉴别是一个重要的临床问题,需要先进的成像技术,但这些技术可能并不普及,而且在多个时间点进行成像具有挑战性。利用传统磁共振成像技术解决这一问题的能力将对临床产生重大影响。本研究的目的是探索对比增强 T2 FLAIR(T2FLAIRc)作为 RN 和 TP 的新成像生物标志物:这项单一机构的回顾性研究纳入了2021年1月至2023年6月期间接受DSC-MRI检查的脑转移瘤患者。参考标准评估基于组织病理学或连续随访,包括自首次 DSC-MRI 起至少 6 个月的 DSC-MRI 结果。指标检测是脑肿瘤 MRI 机构方案的一部分,在首次 DSC-MRI 之前进行。T2FLAIRc和钆增强T1 MPRAGE(T1c)信号与正常脑实质信号进行归一化处理,并以z-score表示。用非配对 t 检验比较 RN 组和 TP 组增强疾病的平均信号强度。通过引导法得出接收者操作特征曲线(ROC)和 ROC 曲线下面积(AUC)。使用 DeLong 检验比较 AUC:共评估了 56 名参与者(平均年龄 62 岁 +/-12.7 [SD];39 名女性);28 名 RN,28 名 TP。指标 MRI 平均在首次 DSC-MRI 之前 73 天 +/-34 [SD] 进行。发现使用 T2FLAIRc 的 RN 的 Z 值明显更高(8.3 对 5.8,pp=0.02)。T2FLAIRc的AUC(0.83,95% CI,0.72-0.92)高于T1c(0.70,95% CI,0.560.83)(P=0.04)。DSC得出的rCBV的AUC(0.82,95% CI,0.70-0.93)与T2FLAIRc无显著差异(p = 0.9):结论:RN 的归一化 T1c 和 T2FLAIRc 信号强度更高。在单变量测试中,增强体素的平均 T2FLAIRc 信号强度在区分 RN 和 TP 方面表现出良好的鉴别性能。这项工作的结果证明了 T2FLAIRc 作为成像生物标记物在脑转移患者 RN 检查中的潜力:缩写:AUC = 接收者操作特征曲线下面积;RN = 辐射坏死;ROC = 接收者操作特征;SRS = 立体定向放射外科;T1c = 对比增强 T1;T2FLAIRc = 对比增强 T2 FLAIR;TP = 肿瘤进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Arterial Spin-Labeling and DSC Perfusion MR Imaging in Pediatric Brain Tumors: A Systematic Review and Meta-Analysis. Diagnostic Performance of Renal Contrast Excretion on Early-Phase CT Myelography in Spontaneous Intracranial Hypotension. Prolonged Venous Transit on Perfusion Imaging is Associated with Longer Lengths of Stay in Acute Large Vessel Occlusions. Accuracy of an nnUNet neural network for the automatic segmentation of intracranial aneurysms, their parent vessels and major cerebral arteries from magnetic resonance imaging-Time of flight (MRI-TOF). Accuracy of Financial Disclosures by Scientific Presenters/Authors at the ASNR 2024 annual meeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1