{"title":"An Explicit and Symmetric Exponential Wave Integrator for the Nonlinear Schrödinger Equation with Low Regularity Potential and Nonlinearity","authors":"Weizhu Bao, Chushan Wang","doi":"10.1137/23m1615656","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1901-1928, August 2024. <br/> Abstract. We propose and analyze a novel symmetric Gautschi-type exponential wave integrator (sEWI) for the nonlinear Schrödinger equation (NLSE) with low regularity potential and typical power-type nonlinearity of the form [math] with [math] being the wave function and [math] being the exponent of the nonlinearity. The sEWI is explicit and stable under a time step size restriction independent of the mesh size. We rigorously establish error estimates of the sEWI under various regularity assumptions on potential and nonlinearity. For “good” potential and nonlinearity ([math]-potential and [math]), we establish an optimal second-order error bound in the [math]-norm. For low regularity potential and nonlinearity ([math]-potential and [math]), we obtain a first-order [math]-norm error bound accompanied with a uniform [math]-norm bound of the numerical solution. Moreover, adopting a new technique of regularity compensation oscillation to analyze error cancellation, for some nonresonant time steps, the optimal second-order [math]-norm error bound is proved under a weaker assumption on the nonlinearity: [math]. For all the cases, we also present corresponding fractional order error bounds in the [math]-norm, which is the natural norm in terms of energy. Extensive numerical results are reported to confirm our error estimates and to demonstrate the superiority of the sEWI, including much weaker regularity requirements on potential and nonlinearity, and excellent long-time behavior with near-conservation of mass and energy.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"100 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1615656","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1901-1928, August 2024. Abstract. We propose and analyze a novel symmetric Gautschi-type exponential wave integrator (sEWI) for the nonlinear Schrödinger equation (NLSE) with low regularity potential and typical power-type nonlinearity of the form [math] with [math] being the wave function and [math] being the exponent of the nonlinearity. The sEWI is explicit and stable under a time step size restriction independent of the mesh size. We rigorously establish error estimates of the sEWI under various regularity assumptions on potential and nonlinearity. For “good” potential and nonlinearity ([math]-potential and [math]), we establish an optimal second-order error bound in the [math]-norm. For low regularity potential and nonlinearity ([math]-potential and [math]), we obtain a first-order [math]-norm error bound accompanied with a uniform [math]-norm bound of the numerical solution. Moreover, adopting a new technique of regularity compensation oscillation to analyze error cancellation, for some nonresonant time steps, the optimal second-order [math]-norm error bound is proved under a weaker assumption on the nonlinearity: [math]. For all the cases, we also present corresponding fractional order error bounds in the [math]-norm, which is the natural norm in terms of energy. Extensive numerical results are reported to confirm our error estimates and to demonstrate the superiority of the sEWI, including much weaker regularity requirements on potential and nonlinearity, and excellent long-time behavior with near-conservation of mass and energy.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.