Qiuting Yang, Lili Yang, Changzhi Chen, Jianghui Yun, Chenyan Zhao and Guorui Liu
{"title":"Atmospheric emissions of Ti-containing nanoparticles from industrial activities in China†","authors":"Qiuting Yang, Lili Yang, Changzhi Chen, Jianghui Yun, Chenyan Zhao and Guorui Liu","doi":"10.1039/D4EN00347K","DOIUrl":null,"url":null,"abstract":"<p >Inhalation of exogenous Ti-containing nanoparticles (NPs) can have adverse effects on human health. However, few studies have considered industrial emissions, which contribute significantly to atmospheric levels of Ti-containing NPs. In this study, we quantified Ti-containing NP emissions in samples of fine particulate matter (particle sizes: 40–120 nm) collected from 132 full-scale industrial plants. Coal-fired power plants emitted the highest particle number concentrations of Ti-containing NPs (1.7 × 10<small><sup>10</sup></small> particles per g), followed by solid waste incineration (7.7 × 10<small><sup>9</sup></small> particles per g) and blast furnace pig iron steelmaking (5.5 × 10<small><sup>9</sup></small> particles per g); coking plants and iron-ore sintering were also significant contributors to Ti-containing NPs emissions. Collectively, these five sources accounted for 99.9% of the annual atmospheric emissions of Ti-containing NPs from 13 industrial sectors in China (total ≈ 9.8 × 10<small><sup>22</sup></small> particles). Moreover, these industrial emissions increased the atmospheric concentration of Ti-containing NPs by 1.7 × 10<small><sup>7</sup></small> particles per m<small><sup>3</sup></small>, therefore leading to the general population's lifetime average daily dose (LADD) of inhaled Ti-containing NPs being 2.4 × 10<small><sup>6</sup></small> particles per day per kg. The findings presented herein highlight the importance of assessing NP emissions and advancing sustainable global industrial development.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 9","pages":" 3816-3825"},"PeriodicalIF":5.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/en/d4en00347k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00347k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhalation of exogenous Ti-containing nanoparticles (NPs) can have adverse effects on human health. However, few studies have considered industrial emissions, which contribute significantly to atmospheric levels of Ti-containing NPs. In this study, we quantified Ti-containing NP emissions in samples of fine particulate matter (particle sizes: 40–120 nm) collected from 132 full-scale industrial plants. Coal-fired power plants emitted the highest particle number concentrations of Ti-containing NPs (1.7 × 1010 particles per g), followed by solid waste incineration (7.7 × 109 particles per g) and blast furnace pig iron steelmaking (5.5 × 109 particles per g); coking plants and iron-ore sintering were also significant contributors to Ti-containing NPs emissions. Collectively, these five sources accounted for 99.9% of the annual atmospheric emissions of Ti-containing NPs from 13 industrial sectors in China (total ≈ 9.8 × 1022 particles). Moreover, these industrial emissions increased the atmospheric concentration of Ti-containing NPs by 1.7 × 107 particles per m3, therefore leading to the general population's lifetime average daily dose (LADD) of inhaled Ti-containing NPs being 2.4 × 106 particles per day per kg. The findings presented herein highlight the importance of assessing NP emissions and advancing sustainable global industrial development.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis