High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling.

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants & redox signaling Pub Date : 2024-08-28 DOI:10.1089/ars.2023.0473
Chenxi Xu, Mengni Wu, Wei Yu, De Xie, Qiang Wang, Binyang Chen, Yuemei Xi, Linqian Yu, Yunbo Yan, Tetsuya Yamamoto, Hidenori Koyama, Hong Zhao, Jidong Cheng
{"title":"High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling.","authors":"Chenxi Xu, Mengni Wu, Wei Yu, De Xie, Qiang Wang, Binyang Chen, Yuemei Xi, Linqian Yu, Yunbo Yan, Tetsuya Yamamoto, Hidenori Koyama, Hong Zhao, Jidong Cheng","doi":"10.1089/ars.2023.0473","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. <b><i>Results:</i></b> We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). <i>N</i>-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. <b><i>Innovation:</i></b> We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. <b><i>Conclusions:</i></b> Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. <i>Antioxid. Redox Signal.</i> 00, 00-00.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0473","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. Results: We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). N-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. Innovation: We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. Conclusions: Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. Antioxid. Redox Signal. 00, 00-00.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高尿酸通过 ROS-GPX4 信号协调铁氧化促进心肌病的发生
目的:高尿酸(HUA)在心血管疾病的病理生理学中起着重要作用。研究表明,尿酸水平升高会对心血管健康产生不利影响。然而,高尿酸血症对心肌病的影响仍不确定。需要进一步研究阐明 HUA 与心肌病之间的关系,揭示其对心脏健康的潜在影响:结果:我们证明了 Uox-KO 小鼠加速了心肌病的发展,导致心功能明显受损和心肌纤维化,同时线粒体形态遭到破坏,脂质过氧化产物数量增加,抗氧化功能减弱。此外,我们还评估了铁蛋白生成抑制剂铁前列素-1(Fer-1)的作用。HUA 联合 DOX 治疗引起的心肌损伤可通过 Fer-1 治疗逆转。苯溴马隆是一种降尿酸药物,它能通过缓解高尿酸血症来减轻 Uox-KO 小鼠的心肌纤维化和铁蛋白沉着。在体外,我们观察到 HUA 与 DOX 联合治疗的心肌细胞活性显著下降,脂质活性氧(ROS)显著增加。随后,我们证实 HUA 可促进 DOX 的氧化应激,表现为线粒体 ROS 增加,并下调谷胱甘肽过氧化物酶 4(GPX4)的蛋白水平。抗氧化剂 N-乙酰-L-半胱氨酸抑制了 HUA 通过增加 GPX4 表达来促进 DOX 诱导的铁变态反应的过程:创新之处:我们验证了 HUA 可加剧心肌损伤。创新点:我们验证了 HUA 可加重心肌损伤,这对治疗高尿酸血症患者的心脏损伤具有临床意义:我们的数据表明,HUA 能促进心肌病变。HUA通过增加氧化应激和下调GPX4促进DOX诱导的铁变态反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
期刊最新文献
Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy. Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork. Androgen Receptor Mediates Dopamine Agonist Resistance by Regulating Intracellular Reactive Oxygen Species in Prolactin-Secreting Pituitary Adenoma. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1