首页 > 最新文献

Antioxidants & redox signaling最新文献

英文 中文
Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-27 DOI: 10.1089/ars.2024.0640
Yijing Zhao, Chengcheng Gai, Shuwen Yu, Yan Song, Bing Gu, Qian Luo, Xixi Wang, Quan Hu, Weiyang Liu, Dexiang Liu, Zhen Wang

Aims: Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Results: Overexpression of miR-9-5p in HI mice or H2O2-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1. This was mediated, in part, through the ability of this miR-9-5p to bind and regulate the transcriptional activity of zinc finger and BTB domain-containing protein 20 (ZBTB20). Further study suggested that the knockdown of ZBTB20 exerts neuroprotection by inhibiting Nrf2/Keap1 interaction to promote the translocation of Nrf2 from the cytoplasm to the nucleus and the consequent expression of antioxidant proteins. Notably, the protective effects of miR-9-5p overexpression against HI-induced mitochondrial damage were reversed by the Nrf2 inhibitor ML385. Finally, the utilization of liposomes for the delivery of miR-9-5p (miR-9-5p@Lip) presents a promising therapeutic strategy for the treatment of HI injury. Innovation: miR-9-5p is a potential therapeutic agent for ischemic stroke through its modulation of the ZBTB20/Nrf2/Keap1 signaling pathway, influencing mitochondrial function and antioxidant response. Furthermore, the use of liposomal delivery for miR-9-5p offers a promising therapeutic strategy for HI injury. Conclusion: Overexpression of miR-9-5p protects against cerebral HI injury by modulating mitochondrial function through the ZBTB20/Nrf2/Keap1 signaling pathway. Antioxid. Redox Signal. 00, 000-000.

{"title":"Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.","authors":"Yijing Zhao, Chengcheng Gai, Shuwen Yu, Yan Song, Bing Gu, Qian Luo, Xixi Wang, Quan Hu, Weiyang Liu, Dexiang Liu, Zhen Wang","doi":"10.1089/ars.2024.0640","DOIUrl":"https://doi.org/10.1089/ars.2024.0640","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. <b><i>Results:</i></b> Overexpression of miR-9-5p in HI mice or H<sub>2</sub>O<sub>2</sub>-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1. This was mediated, in part, through the ability of this miR-9-5p to bind and regulate the transcriptional activity of zinc finger and BTB domain-containing protein 20 (ZBTB20). Further study suggested that the knockdown of ZBTB20 exerts neuroprotection by inhibiting Nrf2/Keap1 interaction to promote the translocation of Nrf2 from the cytoplasm to the nucleus and the consequent expression of antioxidant proteins. Notably, the protective effects of miR-9-5p overexpression against HI-induced mitochondrial damage were reversed by the Nrf2 inhibitor ML385. Finally, the utilization of liposomes for the delivery of miR-9-5p (miR-9-5p@Lip) presents a promising therapeutic strategy for the treatment of HI injury. <b><i>Innovation:</i></b> miR-9-5p is a potential therapeutic agent for ischemic stroke through its modulation of the ZBTB20/Nrf2/Keap1 signaling pathway, influencing mitochondrial function and antioxidant response. Furthermore, the use of liposomal delivery for miR-9-5p offers a promising therapeutic strategy for HI injury. <b><i>Conclusion:</i></b> Overexpression of miR-9-5p protects against cerebral HI injury by modulating mitochondrial function through the ZBTB20/Nrf2/Keap1 signaling pathway. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont Bradyrhizobium diazoefficiens. RegSR 对大豆内生菌 Bradyrhizobium diazoefficiens 中一氧化氮还原的双重氧响应控制。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-27 DOI: 10.1089/ars.2024.0710
Andrea Jiménez-Leiva, Raquel A Juárez-Martos, Juan J Cabrera, María J Torres, Socorro Mesa, María J Delgado

Aims: To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont Bradyrhizobium diazoefficiens. Results: We have performed an integrated study of norCBQD expression and NO reductase activity in regR, regS1, regS2, regS1/2, and nifA mutants in response to microoxia (2% O2) or anoxia. An activating role of RegR and NifA was observed under anoxia. In contrast, under microaerobic conditions, RegR acts as a repressor by binding to a RegR box located between the -10 and -35 regions within the norCBQD promoter. In addition, both RegS1 and RegS2 sensors cooperated with RegR in repressing norCBQD genes. Innovation: NO is a reactive gas that, at high levels, acts as a potent inhibitor of symbiotic nitrogen fixation. In this paper, we report new insights into the regulation of NO reductase, the major enzyme involved in NO removal in rhizobia. This knowledge will be crucial for the development of new strategies and management practices in agriculture, in particular, for improving legume production. Conclusion: Our results demonstrate, for the first time, a dual control of the RegSR two-component regulatory system on norCBQD genes control in response to oxygen levels. Antioxid. Redox Signal. 00, 000-000.

{"title":"Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont <i>Bradyrhizobium diazoefficiens</i>.","authors":"Andrea Jiménez-Leiva, Raquel A Juárez-Martos, Juan J Cabrera, María J Torres, Socorro Mesa, María J Delgado","doi":"10.1089/ars.2024.0710","DOIUrl":"https://doi.org/10.1089/ars.2024.0710","url":null,"abstract":"<p><p><b><i>Aims:</i></b> To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont <i>Bradyrhizobium diazoefficiens</i>. <b><i>Results:</i></b> We have performed an integrated study of <i>norCBQD</i> expression and NO reductase activity in <i>regR</i>, <i>regS</i><sub>1</sub>, <i>regS</i><sub>2</sub>, <i>regS</i><sub>1/2</sub>, and <i>nifA</i> mutants in response to microoxia (2% O<sub>2</sub>) or anoxia. An activating role of RegR and NifA was observed under anoxia. In contrast, under microaerobic conditions, RegR acts as a repressor by binding to a RegR box located between the -10 and -35 regions within the <i>norCBQD</i> promoter. In addition, both RegS<sub>1</sub> and RegS<sub>2</sub> sensors cooperated with RegR in repressing <i>norCBQD</i> genes. <b><i>Innovation:</i></b> NO is a reactive gas that, at high levels, acts as a potent inhibitor of symbiotic nitrogen fixation. In this paper, we report new insights into the regulation of NO reductase, the major enzyme involved in NO removal in rhizobia. This knowledge will be crucial for the development of new strategies and management practices in agriculture, in particular, for improving legume production. <b><i>Conclusion:</i></b> Our results demonstrate, for the first time, a dual control of the RegSR two-component regulatory system on <i>norCBQD</i> genes control in response to oxygen levels. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-23 DOI: 10.1089/ars.2023.0428
Sirsendu Jana, Abdu I Alayash

Significance: The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. Recent Advances: We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. Critical Issues: Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. Future Directions: Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. Antioxid. Redox Signal. 00, 000-000.

{"title":"Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.","authors":"Sirsendu Jana, Abdu I Alayash","doi":"10.1089/ars.2023.0428","DOIUrl":"https://doi.org/10.1089/ars.2023.0428","url":null,"abstract":"<p><p><b><i>Significance:</i></b> The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. <b><i>Recent Advances:</i></b> We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. <b><i>Critical Issues:</i></b> Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. <b><i>Future Directions:</i></b> Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. 生理性脂肪酸刺激胰岛素分泌和氧化还原信号与脂肪毒性。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-20 DOI: 10.1089/ars.2024.0799
Petr Ježek

Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 00, 000-000.

意义:2型糖尿病是一种世界性的流行病,其特点是胰岛素抵抗,伴有β细胞质量和功能的逐渐损害(胰岛素分泌显著下降),脂肪酸(FAs)和脂质失调,所有这些都涉及多种病理发展。最近的进展:最近,氧化还原信号被认为是葡萄糖(GSIS)、支链酮酸和FAs刺激胰岛素分泌所必需的。fa刺激胰岛素分泌(FASIS)是餐后进入乳糜微粒的正常生理事件。这与在啮齿类动物中观察到的常见脂肪毒性形成对比。关键问题:过度喂养导致FASIS与GSIS重叠,提供重复的高胰岛素血症,通过脂毒性作用和低度炎症启动糖尿病前期状态。相反,脂滴在人β细胞中的保护作用抵消了过量的脂质。当餐后乳糜微粒出现较晚的低血糖状态时,经FASIS作用的胰岛素允许FATP1募集到脂肪细胞膜。未来方向:糖尿病前期和2型糖尿病患者胰腺β细胞和周围器官的受损状态,包括细胞外囊泡的器官间串扰。FA/脂质分子生理学的细节尚未被揭示,例如FA进入细胞的复杂现象,g蛋白偶联受体40的吸收后失活,肉碱载体底物特异性,肉碱- o -乙酰转移酶在β细胞中的作用,以及脂滴与线粒体的相互作用。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling <i>Versus</i> Lipotoxicity.","authors":"Petr Ježek","doi":"10.1089/ars.2024.0799","DOIUrl":"https://doi.org/10.1089/ars.2024.0799","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. <b><i>Recent Advances:</i></b> Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. <b><i>Critical Issues</i></b>: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. <b><i>Future Directions:</i></b> Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur Dioxide Alleviates Aortic Dissection Through Inhibiting Vascular Smooth Muscle Cell Phenotype Switch, Migration, and Proliferation via miR-184-3p/Cyp26b1 Axis. 二氧化硫通过miR-184-3p/Cyp26b1轴抑制血管平滑肌细胞表型转换、迁移和增殖来缓解主动脉夹层。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-20 DOI: 10.1089/ars.2023.0471
Jie He, Kan Huang, Xiaoping Fan, Guangqi Chang

Aims: Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are considered early events in the onset of thoracic aortic dissection (TAD). Endogenous sulfur dioxide (SO2), primarily produced by aspartate aminotransferase (AAT1) in mammals, has been reported to inhibit the migration and proliferation of VSMCs. However, the role of SO2 in the development of TAD remains unclear. Results: Endogenous SO2 production was decreased in aortic samples from patients with TAD. Supplementation with SO2 ameliorated β-aminopropionitrile-induced vascular injury in mice. Increasing the expression of SO2 pathway might reverse the abnormal migration, proliferation, and phenotypic switching in VSMCs. MicroRNA sequencing revealed miR-184-3p as the miRNA with the most significant increased expression level after AAT1 knockdown, and Cyp26b1 was predicted to be its potential target. A decrease in the SO2 pathway resulted in reduced Cyp26b1 expression, impairing VSMCs function, while restoring Cyp26b1 expression with miR-184-3p inhibitors could improve the VSMCs function. Innovation: This research extends the application of endogenous SO2 to the aortic diseases and elucidates the role of miRNA in endogenous SO2 regulatory network, highlighting its potential as a target for clinical practice. Conclusion: Endogenous SO2 inhibits the migration and proliferation of VSMCs in TAD progression via the miR-184-3p/Cyp26b1 axis. Antioxid. Redox Signal. 00, 000-000.

目的:血管平滑肌细胞(VSMCs)的异常迁移和增殖被认为是胸主动脉夹层(TAD)发病的早期事件。内源性二氧化硫(SO2)主要由哺乳动物的天冬氨酸转氨酶(AAT1)产生,据报道可抑制VSMCs的迁移和增殖。然而,SO2在TAD发展中的作用尚不清楚。结果:TAD患者主动脉样本内源性SO2生成减少。补充SO2可改善β-氨基丙腈诱导的小鼠血管损伤。增加SO2通路的表达可能逆转VSMCs的异常迁移、增殖和表型转换。MicroRNA测序显示,AAT1敲低后miR-184-3p是表达水平升高最显著的miRNA,预计Cyp26b1是其潜在靶点。SO2通路的减少导致Cyp26b1表达降低,VSMCs功能受损,而使用miR-184-3p抑制剂恢复Cyp26b1表达可改善VSMCs功能。创新点:本研究拓展了内源性SO2在主动脉疾病中的应用,阐明了miRNA在内源性SO2调控网络中的作用,突出了其作为临床靶点的潜力。结论:内源性SO2通过miR-184-3p/Cyp26b1轴抑制TAD进展中VSMCs的迁移和增殖。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Sulfur Dioxide Alleviates Aortic Dissection Through Inhibiting Vascular Smooth Muscle Cell Phenotype Switch, Migration, and Proliferation <i>via</i> miR-184-3p/Cyp26b1 Axis.","authors":"Jie He, Kan Huang, Xiaoping Fan, Guangqi Chang","doi":"10.1089/ars.2023.0471","DOIUrl":"https://doi.org/10.1089/ars.2023.0471","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are considered early events in the onset of thoracic aortic dissection (TAD). Endogenous sulfur dioxide (SO<sub>2</sub>), primarily produced by aspartate aminotransferase (AAT1) in mammals, has been reported to inhibit the migration and proliferation of VSMCs. However, the role of SO<sub>2</sub> in the development of TAD remains unclear. <b><i>Results:</i></b> Endogenous SO<sub>2</sub> production was decreased in aortic samples from patients with TAD. Supplementation with SO<sub>2</sub> ameliorated β-aminopropionitrile-induced vascular injury in mice. Increasing the expression of SO<sub>2</sub> pathway might reverse the abnormal migration, proliferation, and phenotypic switching in VSMCs. MicroRNA sequencing revealed miR-184-3p as the miRNA with the most significant increased expression level after AAT1 knockdown, and Cyp26b1 was predicted to be its potential target. A decrease in the SO<sub>2</sub> pathway resulted in reduced Cyp26b1 expression, impairing VSMCs function, while restoring Cyp26b1 expression with miR-184-3p inhibitors could improve the VSMCs function. <b><i>Innovation:</i></b> This research extends the application of endogenous SO<sub>2</sub> to the aortic diseases and elucidates the role of miRNA in endogenous SO<sub>2</sub> regulatory network, highlighting its potential as a target for clinical practice. <b><i>Conclusion:</i></b> Endogenous SO<sub>2</sub> inhibits the migration and proliferation of VSMCs in TAD progression <i>via</i> the miR-184-3p/Cyp26b1 axis. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic Control of Redox Pathways in Cancer Progression. 癌症进展中氧化还原途径的表观遗传控制。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1089/ars.2023.0465
Vandit Shah, Hiu Yan Lam, Charlene Hoi-Mun Leong, Reo Sakaizawa, Jigna S Shah, Alan Prem Kumar

Significance: Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. Recent Advances: We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA. Critical Issues: In cancerous cells, alterations of the gene-expression regulatory elements could be generated by the virtue of imbalance in tumor microenvironment. Various oxidizing agents and mitochondrial electron transport chain are the major pathways that generate ROS. ROS plays a key role in carcinogenesis by activating pro-inflammatory signaling pathways and DNA damage. This loss of ROS-mediated epigenetic regulation of the signaling pathways may promote tumorigenesis. We address all such aspects in this review. Future Directions: Developments in this growing field of epigenetics are expected to contribute to further our understanding of human health and diseases such as cancer and to test the clinical applications of redox-based therapy. Recent studies of the cancer-epigenetic landscape have revealed pervasive deregulation of the epigenetic factors in cancer. Thus, the study of interaction between ROS and epigenetic factors in cancer holds a great promise in the development of effective and targeted treatment modalities. Antioxid. Redox Signal. 00, 000-000.

意义:越来越多的证据表明,主要由活性氧(ROS)介导的氧化还原反应稳态在影响癌症的发生、分化、进展、转移、程序性细胞死亡、肿瘤微环境和治疗耐药中的重要性。因此,回顾癌症中ros相关的表观遗传变化是了解癌症进展和预防的基础。最新进展:我们深入回顾了ros介导的表观遗传变化的分子机制,这些变化通过改变DNA、修饰组蛋白、重塑染色质和非编码RNA而导致基因表达的改变。关键问题:在癌细胞中,由于肿瘤微环境的不平衡,可能导致基因表达调控元件的改变。各种氧化剂和线粒体电子传递链是产生ROS的主要途径。ROS通过激活促炎信号通路和DNA损伤在致癌过程中起关键作用。ros介导的表观遗传信号通路调控的缺失可能促进肿瘤的发生。我们在本次审查中讨论所有这些方面。未来方向:表观遗传学这一不断发展的领域的发展有望有助于我们进一步了解人类健康和癌症等疾病,并测试基于氧化还原的治疗的临床应用。最近对癌症表观遗传景观的研究揭示了普遍解除癌症表观遗传因素的管制。因此,研究ROS与表观遗传因子在癌症中的相互作用对开发有效的靶向治疗方式具有很大的希望。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Epigenetic Control of Redox Pathways in Cancer Progression.","authors":"Vandit Shah, Hiu Yan Lam, Charlene Hoi-Mun Leong, Reo Sakaizawa, Jigna S Shah, Alan Prem Kumar","doi":"10.1089/ars.2023.0465","DOIUrl":"https://doi.org/10.1089/ars.2023.0465","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. <b><i>Recent Advances:</i></b> We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA. <b><i>Critical Issues:</i></b> In cancerous cells, alterations of the gene-expression regulatory elements could be generated by the virtue of imbalance in tumor microenvironment. Various oxidizing agents and mitochondrial electron transport chain are the major pathways that generate ROS. ROS plays a key role in carcinogenesis by activating pro-inflammatory signaling pathways and DNA damage. This loss of ROS-mediated epigenetic regulation of the signaling pathways may promote tumorigenesis. We address all such aspects in this review. <b><i>Future Directions:</i></b> Developments in this growing field of epigenetics are expected to contribute to further our understanding of human health and diseases such as cancer and to test the clinical applications of redox-based therapy. Recent studies of the cancer-epigenetic landscape have revealed pervasive deregulation of the epigenetic factors in cancer. Thus, the study of interaction between ROS and epigenetic factors in cancer holds a great promise in the development of effective and targeted treatment modalities. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALOX15 Aggravates Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice with Type 2 Diabetes via Activating the PPARγ/CD36 Axis. ALOX15通过激活PPARγ/CD36轴加重2型糖尿病小鼠代谢功能障碍相关的脂肪变性肝病
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-16 DOI: 10.1089/ars.2024.0670
Wenhui Yan, Xin Cui, Tingli Guo, Na Liu, Zhuanzhuan Wang, Yuzhuo Sun, Yuanrui Shang, Jieyun Liu, Yuanyuan Zhu, Yangyang Zhang, Lina Chen

Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD. Results: In this study, we observed upregulation of ALOX15 in the liver of high-fat diet (HFD)- and streptozotocin (STZ)-induced mice. Metabolomic analysis revealed elevated levels of ALOX15 metabolites, 12(S)-hydroperoxyeicosatetraenoic acid and 15(S)-hydroperoxyeicosatetraenoic acid. Transcriptomic analysis showed that the increased fatty acid uptake regulated by the PPARγ/CD36 pathway predominated in lipid accumulation. To elucidate the mechanism underlying ALOX15-induced lipid accumulation, HepG2 cells were transfected with a lentivirus expressing ALOX15 or small interfering RNA targeting ALOX15 and exposed to palmitic acid (PA). Both ALOX15 overexpression and PA exposure led to increased intracellular free fatty acid and triglyceride, resulting in lipotoxicity. ALOX15 overexpression aggravated the effect of PA, while the knockdown of ALOX15 attenuated PA-induced lipotoxicity. Moreover, the treatment with PPARγ antagonist GW9662 or CD36 inhibitor sulfosuccinimidyl oleate sodium effectively reduced lipid accumulation and lipotoxicity resulting from ALOX15 overexpression and PA exposure, indicating the involvement of the PPARγ/CD36 pathway in ALOX15-mediated lipid accumulation. Furthermore, liraglutide, a widely used glucagon-like peptide 1 receptor (GLP-1R) agonist (GLP-1RA), improved hepatic lipid accumulation in HFD/STZ-induced mice by suppressing the ALOX15/PPARγ/CD36 pathway. Innovation and Conclusion: Our study underscores the potential of ALOX15 as an emerging therapeutic target for MASLD. In addition, the GLP-1RA may confer hepatoprotection by regulating ALOX15, enhancing our comprehension of the mechanisms underpinning their protection on MASLD. Antioxid. Redox Signal. 00, 000-000.

目的:代谢功能障碍相关脂肪变性肝病(MASLD)是一种世界范围内普遍存在的肝脏疾病。花生四烯酸15-脂氧合酶(ALOX15)是一种催化多不饱和脂肪酸过氧化的酶,在多种疾病中起着重要作用。在这里,我们试图调查ALOX15在MASLD中的作用。结果:在本研究中,我们观察到高脂饮食(HFD)和链脲佐菌素(STZ)诱导小鼠肝脏中ALOX15表达上调。代谢组学分析显示ALOX15代谢物、12(S)-氢过氧二十碳四烯酸和15(S)-氢过氧二十碳四烯酸水平升高。转录组学分析显示,PPARγ/CD36通路调节的脂肪酸摄取增加在脂质积累中起主导作用。为了阐明ALOX15诱导脂质积累的机制,我们用表达ALOX15或靶向ALOX15的小干扰RNA的慢病毒转染HepG2细胞,并暴露于棕榈酸(PA)中。ALOX15过表达和PA暴露均导致细胞内游离脂肪酸和甘油三酯增加,导致脂肪毒性。ALOX15的过表达加重了PA的作用,而ALOX15的下调则减轻了PA引起的脂肪毒性。此外,PPARγ拮抗剂GW9662或CD36抑制剂磺基琥珀酰油酸钠有效地减少了ALOX15过表达和PA暴露导致的脂质积累和脂肪毒性,表明PPARγ/CD36途径参与了ALOX15介导的脂质积累。此外,利拉鲁肽是一种广泛使用的胰高血糖素样肽1受体(GLP-1R)激动剂(GLP-1RA),通过抑制ALOX15/PPARγ/CD36途径改善HFD/ stz诱导小鼠的肝脏脂质积累。创新和结论:我们的研究强调了ALOX15作为MASLD新兴治疗靶点的潜力。此外,GLP-1RA可能通过调节ALOX15赋予肝脏保护作用,增强了我们对其对MASLD保护机制的理解。Antioxid。氧化还原信号:00000 - 00000。
{"title":"ALOX15 Aggravates Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice with Type 2 Diabetes via Activating the PPARγ/CD36 Axis.","authors":"Wenhui Yan, Xin Cui, Tingli Guo, Na Liu, Zhuanzhuan Wang, Yuzhuo Sun, Yuanrui Shang, Jieyun Liu, Yuanyuan Zhu, Yangyang Zhang, Lina Chen","doi":"10.1089/ars.2024.0670","DOIUrl":"https://doi.org/10.1089/ars.2024.0670","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD. <b><i>Results:</i></b> In this study, we observed upregulation of ALOX15 in the liver of high-fat diet (HFD)- and streptozotocin (STZ)-induced mice. Metabolomic analysis revealed elevated levels of ALOX15 metabolites, 12(S)-hydroperoxyeicosatetraenoic acid and 15(S)-hydroperoxyeicosatetraenoic acid. Transcriptomic analysis showed that the increased fatty acid uptake regulated by the PPARγ/CD36 pathway predominated in lipid accumulation. To elucidate the mechanism underlying ALOX15-induced lipid accumulation, HepG2 cells were transfected with a lentivirus expressing ALOX15 or small interfering RNA targeting ALOX15 and exposed to palmitic acid (PA). Both ALOX15 overexpression and PA exposure led to increased intracellular free fatty acid and triglyceride, resulting in lipotoxicity. ALOX15 overexpression aggravated the effect of PA, while the knockdown of ALOX15 attenuated PA-induced lipotoxicity. Moreover, the treatment with PPARγ antagonist GW9662 or CD36 inhibitor sulfosuccinimidyl oleate sodium effectively reduced lipid accumulation and lipotoxicity resulting from ALOX15 overexpression and PA exposure, indicating the involvement of the PPARγ/CD36 pathway in ALOX15-mediated lipid accumulation. Furthermore, liraglutide, a widely used glucagon-like peptide 1 receptor (GLP-1R) agonist (GLP-1RA), improved hepatic lipid accumulation in HFD/STZ-induced mice by suppressing the ALOX15/PPARγ/CD36 pathway. <b><i>Innovation and Conclusion:</i></b> Our study underscores the potential of ALOX15 as an emerging therapeutic target for MASLD. In addition, the GLP-1RA may confer hepatoprotection by regulating ALOX15, enhancing our comprehension of the mechanisms underpinning their protection on MASLD. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CCAAT/Enhancer-Binding Protein Beta Nitration Participates in Hyperhomocysteinemia-Induced Cardiomyocyte Autophagic Flux Blockage by Inhibiting Transcription Factor EB Transcription. CCAAT/增强子结合蛋白β -硝化通过抑制转录因子EB转录参与高同型半胱氨酸血症诱导的心肌细胞自噬通量阻断
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-09 DOI: 10.1089/ars.2023.0517
Jiayin Chai, Jiahui Xu, Shangyue Zhang, Wenjing Yan, Shuai Chen, Xinyu Zhu, Chenghua Luo, Wen Wang

Aims: Autophagy is a protective mechanism of cardiomyocytes. Hyperhomocysteinemia (HHcy) elevates oxidative and nitrosative stress levels, leading to an abnormal increase in nitration protein, possibly leading to abnormal autophagy regulation in cardiomyocytes. However, the regulatory effect of HHcy on autophagy at the post-translational modification level is still unclear. Here, we aimed to explore the regulatory mechanism of HHcy on transcription factor EB (TFEB) and nitration of CCAAT/enhancer-binding protein beta (C/EBPβ), a transcriptional repressor of Tfeb, on autophagy in cardiomyocytes. Results: In this study, we established the HHcy rat model by feeding a 2.5% (w/w) methionine diet. The nitration level of C/EBPβ was increased in HHcy, which promoted the entry of C/EBPβ into the nucleus, enhanced the transcriptional suppressive effect of C/EBPβ on Tfeb, and induced insufficient autophagy in cardiomyocytes. Furthermore, we confirmed that the Tyr 274 site of C/EBPβ could undergo nitration induced by HHcy. Once C/EBPβ was nitrated on the Tyr 274 site, the nuclear translocation of C/EBPβ and transcription suppressor function of C/EBPβ on Tfeb were enhanced. Innovation and Conclusion: We find that C/EBPβ is a transcriptional repressor of Tfeb, and HHcy induces the nitration at the Tyr 274 site of C/EBPβ, leading to autophagic flux blockage in cardiomyocytes. These data indicated that nitrated C/EBPβ might be a potential therapeutic target against HHcy-induced autophagy insufficiency of cardiomyocytes. Antioxid. Redox Signal. 00, 000-000.

目的:自噬是心肌细胞的一种保护机制。高同型半胱氨酸血症(HHcy)升高氧化和亚硝化应激水平,导致硝化蛋白异常增加,可能导致心肌细胞自噬调节异常。然而,在翻译后修饰水平上,HHcy对自噬的调控作用尚不清楚。本研究旨在探讨HHcy对转录因子EB (TFEB)的调控机制,以及TFEB转录抑制因子CCAAT/增强子结合蛋白β (C/EBPβ)的硝化作用对心肌细胞自噬的调控作用。结果:本研究采用2.5% (w/w)蛋氨酸日粮建立HHcy大鼠模型。在HHcy中,C/EBPβ的硝化水平升高,促进C/EBPβ进入细胞核,增强C/EBPβ对Tfeb的转录抑制作用,诱导心肌细胞自噬不足。此外,我们证实了C/EBPβ的Tyr 274位点可以被HHcy诱导硝化。一旦C/EBPβ在Tyr 274位点上被硝化,C/EBPβ的核易位和C/EBPβ在Tfeb上的转录抑制功能增强。创新与结论:我们发现C/EBPβ是Tfeb的转录抑制因子,HHcy诱导C/EBPβ在Tyr 274位点的硝化作用,导致心肌细胞自噬通量阻滞。这些数据表明硝化C/EBPβ可能是治疗hhcy诱导的心肌细胞自噬不足的潜在靶点。Antioxid。氧化还原信号:00000 - 00000。
{"title":"CCAAT/Enhancer-Binding Protein Beta Nitration Participates in Hyperhomocysteinemia-Induced Cardiomyocyte Autophagic Flux Blockage by Inhibiting Transcription Factor EB Transcription.","authors":"Jiayin Chai, Jiahui Xu, Shangyue Zhang, Wenjing Yan, Shuai Chen, Xinyu Zhu, Chenghua Luo, Wen Wang","doi":"10.1089/ars.2023.0517","DOIUrl":"https://doi.org/10.1089/ars.2023.0517","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Autophagy is a protective mechanism of cardiomyocytes. Hyperhomocysteinemia (HHcy) elevates oxidative and nitrosative stress levels, leading to an abnormal increase in nitration protein, possibly leading to abnormal autophagy regulation in cardiomyocytes. However, the regulatory effect of HHcy on autophagy at the post-translational modification level is still unclear. Here, we aimed to explore the regulatory mechanism of HHcy on transcription factor EB (TFEB) and nitration of CCAAT/enhancer-binding protein beta (C/EBPβ), a transcriptional repressor of <i>Tfeb</i>, on autophagy in cardiomyocytes. <b><i>Results:</i></b> In this study, we established the HHcy rat model by feeding a 2.5% (w/w) methionine diet. The nitration level of C/EBPβ was increased in HHcy, which promoted the entry of C/EBPβ into the nucleus, enhanced the transcriptional suppressive effect of C/EBPβ on <i>Tfeb</i>, and induced insufficient autophagy in cardiomyocytes. Furthermore, we confirmed that the Tyr 274 site of C/EBPβ could undergo nitration induced by HHcy. Once C/EBPβ was nitrated on the Tyr 274 site, the nuclear translocation of C/EBPβ and transcription suppressor function of C/EBPβ on <i>Tfeb</i> were enhanced. <b><i>Innovation and Conclusion:</i></b> We find that C/EBPβ is a transcriptional repressor of <i>Tfeb</i>, and HHcy induces the nitration at the Tyr 274 site of C/EBPβ, leading to autophagic flux blockage in cardiomyocytes. These data indicated that nitrated C/EBPβ might be a potential therapeutic target against HHcy-induced autophagy insufficiency of cardiomyocytes. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Oxidoreductase Retinol Saturase in Thyroid Gland Is Regulated by Hypothyroidism and Iodide Overload and Its Deletion Impairs Metabolic Homeostasis in Mice. 甲状腺氧化还原酶视黄醇饱和酶受甲状腺功能减退和碘超载的调控,其缺失损害小鼠代谢稳态。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.1089/ars.2023.0458
Na Yang, Lisa Wessoly, Yueming Meng, Marie F Kiefer, Yingfu Chen, Madita Vahrenbrink, Sascha Wulff, Chen Li, Jonah W Schreier, Julia S Steinhoff, Moritz Oster, Manuela Sommerfeld, Sylvia J Wowro, Konstantin M Petricek, Roberto E Flores, Panos G Ziros, Gerasimos P Sykiotis, Eva K Wirth, Michael Schupp

Aims: Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of H2O2 to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis. RetSat is highly expressed in metabolically active organs where it regulates lipid metabolism and the production of reactive oxygen species. Due to the high expression of RetSat in the thyroid gland and its role in peroxide sensitivity, we investigated the regulation and function of RetSat in the thyroid gland in appropriate mouse models. Results: RetSat is strongly expressed in thyrocytes, induced by hypothyroidism, and decreased by iodide overload in mice. Thyrocyte-specific deletion of RetSat increased circulating thyroid-stimulating hormone levels, altered thyroid morphology, and disturbed metabolic homeostasis in a diet- and sex-dependent manner without major effects on the concentrations of circulating TH. Moreover, deletion of RetSat increased TG protein levels but lowered TG iodination upon iodide overload. In cultured thyrocytes, acute RetSat depletion altered the expression of genes involved in TH biosynthesis and the response to endoplasmic reticulum stress. Innovation: This is the first report that specifically dissects the regulation and function of the oxidoreductase RetSat in the thyroid gland. Conclusion: Deletion of RetSat in thyrocytes induces compensatory feedback mechanisms to maintain TH homeostasis in mice. We conclude that RetSat in the thyroid gland is required for TH biosynthesis and secretion and metabolic homeostasis in mice. Antioxid. Redox Signal. 00, 000-000.

目的:甲状腺激素(TH)是细胞分化、生长和代谢率的主要调节因子。甲状腺中的TH合成需要大量的H2O2来氧化碘化物以碘化甲状腺球蛋白(TG)。视黄醇饱和酶(RetSat)是一种氧化还原酶,与二氢视黄醇的形成和细胞对过氧化物和铁下垂的敏感性有关。RetSat在代谢活跃的器官中高度表达,调节脂质代谢和活性氧的产生。由于RetSat在甲状腺中的高表达及其在过氧化物敏感性中的作用,我们在适当的小鼠模型中研究了RetSat在甲状腺中的调节和功能。结果:RetSat在甲状腺功能减退诱导的小鼠甲状腺细胞中强烈表达,碘超载导致RetSat表达降低。甲状腺细胞特异性的RetSat缺失增加了循环促甲状腺激素水平,改变了甲状腺形态,并以饮食和性别依赖的方式扰乱了代谢稳态,但对循环TH浓度没有重大影响。此外,RetSat的缺失增加了TG蛋白水平,但在碘化物过载时降低了TG的碘化。在培养的甲状腺细胞中,急性RetSat缺失改变了参与TH生物合成和内质网应激反应的基因的表达。创新:这是第一个专门剖析氧化还原酶RetSat在甲状腺中的调节和功能的报告。结论:小鼠甲状腺细胞中RetSat缺失可诱导代偿反馈机制维持甲状腺稳态。我们得出结论,甲状腺中的RetSat是小鼠TH生物合成、分泌和代谢稳态所必需的。Antioxid。氧化还原信号:00000 - 00000。
{"title":"The Oxidoreductase Retinol Saturase in Thyroid Gland Is Regulated by Hypothyroidism and Iodide Overload and Its Deletion Impairs Metabolic Homeostasis in Mice.","authors":"Na Yang, Lisa Wessoly, Yueming Meng, Marie F Kiefer, Yingfu Chen, Madita Vahrenbrink, Sascha Wulff, Chen Li, Jonah W Schreier, Julia S Steinhoff, Moritz Oster, Manuela Sommerfeld, Sylvia J Wowro, Konstantin M Petricek, Roberto E Flores, Panos G Ziros, Gerasimos P Sykiotis, Eva K Wirth, Michael Schupp","doi":"10.1089/ars.2023.0458","DOIUrl":"https://doi.org/10.1089/ars.2023.0458","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of H<sub>2</sub>O<sub>2</sub> to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis. RetSat is highly expressed in metabolically active organs where it regulates lipid metabolism and the production of reactive oxygen species. Due to the high expression of RetSat in the thyroid gland and its role in peroxide sensitivity, we investigated the regulation and function of RetSat in the thyroid gland in appropriate mouse models. <b><i>Results:</i></b> RetSat is strongly expressed in thyrocytes, induced by hypothyroidism, and decreased by iodide overload in mice. Thyrocyte-specific deletion of <i>RetSat</i> increased circulating thyroid-stimulating hormone levels, altered thyroid morphology, and disturbed metabolic homeostasis in a diet- and sex-dependent manner without major effects on the concentrations of circulating TH. Moreover, deletion of <i>RetSat</i> increased TG protein levels but lowered TG iodination upon iodide overload. In cultured thyrocytes, acute RetSat depletion altered the expression of genes involved in TH biosynthesis and the response to endoplasmic reticulum stress. <b><i>Innovation:</i></b> This is the first report that specifically dissects the regulation and function of the oxidoreductase RetSat in the thyroid gland. <b><i>Conclusion:</i></b> Deletion of <i>RetSat</i> in thyrocytes induces compensatory feedback mechanisms to maintain TH homeostasis in mice. We conclude that RetSat in the thyroid gland is required for TH biosynthesis and secretion and metabolic homeostasis in mice. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Emerging Role of Herbal Medicines in Cancer by Interfering with Posttranslational Modifications. 中草药通过干扰翻译后修饰对癌症的新作用。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-07 DOI: 10.1089/ars.2023.0418
Rui Wang, Yu Li, Jiahui Ji, Lingwei Kong, Yukai Huang, Zhongqiu Liu, Linlin Lu

Significance: Herbal medicines have a long history of comprehensive cancer treatment through various posttranslational modifications (PTMs). Recently, emerging evidence revealed that dysregulation of reactive oxygen species (ROS) and ROS-regulated signaling pathways influence cancer initiation, growth, and progression in a paradoxical role with either low levels or increasing levels of basal ROS. However, ROS-triggered modifications of target proteins in the face of ROS-mediated signal transduction are not fully understood in the anticancer therapies of herbal medicines. In this review, we briefly introduce the PTM-dependent regulations of herbal medicines, and then focus on the current ideals that targeting ROS-dependent PTMs via antioxidant and redox signaling pathways can provide a promising strategy in herbal-based anticancer effects. Recent Advances: Advanced development in highly sensitive mass spectrometry-based techniques has helped utilize ROS-triggered protein modifications in numerous cancers. Accumulating evidence has been achieved in laboratory to extensively ascertain the biological mechanism of herbal medicines targeting ROS in cancer therapy. Two general mechanisms underlining ROS-induced cell signaling include redox state and oxidative modification of target protein, indicating a new perspective to comprehend the intricate dialogues between herbal medicines and cancer cellular contexts. Critical Issues: Complex components of herbal medicines limit the benefits of herbal-based cancer therapies. In this review, we address that ROS-dependent PTMs add a layer of proteomic complexity to the cancer through altering the protein structure, expression, function, and localization. Elaborating ROS-triggered PTMs implicated in cell signaling, apoptosis, and transcriptional regulation function, and the possible cellular signaling, has provided important information about the contribution of many ROS targeting herbal therapies in anticancer effects. Continued optimization of proteomic strategies for PTM analysis in herbal medicines is also briefly discussed. Future Directions: Rigorous evaluations of herbal medicines and proteomic strategies are necessary to explore the aberrant regulation of ROS-triggered antioxidant and redox signaling contributing to the novel protein targets and herbal-associated pharmacological issues. These efforts will eventually help develop more herbal drugs as modern therapeutic agents. Antioxid. Redox Signal. 42, 150-164.

意义重大:中草药在治疗癌症方面具有临床前景。蛋白质翻译后修饰(PTMs)调控肿瘤发生和癌症进展。尽管对导致癌症的 PTM 进行了深入研究,但中药对 PTM 相关致癌作用的确切机制和明确靶点仍不清楚。因此,全面了解 PTM 如何调控癌症特征对于阐明中药治疗癌症的药理机制至关重要:最近的进展:基于高灵敏度质谱(MS)技术的先进发展有助于利用以 PTM 为重点的癌症研究。实验室已积累了大量证据,以确定中草药治疗癌症的生物学机制。癌症与 PTM 之间的密切联系为理解中草药与细胞环境之间错综复杂的对话提供了新的视角:关键问题:中草药的复杂成分限制了以中草药为基础的癌症疗法的益处。在这篇综述中,我们探讨了 PTM 通过改变蛋白质的结构、表达、功能和定位,为癌症增加了一层蛋白质组的复杂性。阐明与细胞信号传导、细胞凋亡和转录调控功能有关的 PTM 以及可能的细胞信号传导,为许多中草药疗法的机制提供了重要信息。未来的研究方向:未来方向:有必要对中草药和化学蛋白组学策略进行严格评估,以探索导致癌症发展的 PTM 动态调控失常以及与中草药相关的药理问题。这些努力最终将有助于开发出更多作为现代治疗药物的中草药。
{"title":"The Emerging Role of Herbal Medicines in Cancer by Interfering with Posttranslational Modifications.","authors":"Rui Wang, Yu Li, Jiahui Ji, Lingwei Kong, Yukai Huang, Zhongqiu Liu, Linlin Lu","doi":"10.1089/ars.2023.0418","DOIUrl":"10.1089/ars.2023.0418","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Herbal medicines have a long history of comprehensive cancer treatment through various posttranslational modifications (PTMs). Recently, emerging evidence revealed that dysregulation of reactive oxygen species (ROS) and ROS-regulated signaling pathways influence cancer initiation, growth, and progression in a paradoxical role with either low levels or increasing levels of basal ROS. However, ROS-triggered modifications of target proteins in the face of ROS-mediated signal transduction are not fully understood in the anticancer therapies of herbal medicines. In this review, we briefly introduce the PTM-dependent regulations of herbal medicines, and then focus on the current ideals that targeting ROS-dependent PTMs <i>via</i> antioxidant and redox signaling pathways can provide a promising strategy in herbal-based anticancer effects. <b><i>Recent Advances:</i></b> Advanced development in highly sensitive mass spectrometry-based techniques has helped utilize ROS-triggered protein modifications in numerous cancers. Accumulating evidence has been achieved in laboratory to extensively ascertain the biological mechanism of herbal medicines targeting ROS in cancer therapy. Two general mechanisms underlining ROS-induced cell signaling include redox state and oxidative modification of target protein, indicating a new perspective to comprehend the intricate dialogues between herbal medicines and cancer cellular contexts. <b><i>Critical Issues:</i></b> Complex components of herbal medicines limit the benefits of herbal-based cancer therapies. In this review, we address that ROS-dependent PTMs add a layer of proteomic complexity to the cancer through altering the protein structure, expression, function, and localization. Elaborating ROS-triggered PTMs implicated in cell signaling, apoptosis, and transcriptional regulation function, and the possible cellular signaling, has provided important information about the contribution of many ROS targeting herbal therapies in anticancer effects. Continued optimization of proteomic strategies for PTM analysis in herbal medicines is also briefly discussed. <b><i>Future Directions:</i></b> Rigorous evaluations of herbal medicines and proteomic strategies are necessary to explore the aberrant regulation of ROS-triggered antioxidant and redox signaling contributing to the novel protein targets and herbal-associated pharmacological issues. These efforts will eventually help develop more herbal drugs as modern therapeutic agents. <i>Antioxid. Redox Signal.</i> 42, 150-164.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"150-164"},"PeriodicalIF":5.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Antioxidants & redox signaling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1