{"title":"Dopaminergic and anti-estrogenic responses in juvenile steelhead (Oncorhynchus mykiss) exposed to bifenthrin","authors":"","doi":"10.1016/j.cbpc.2024.109995","DOIUrl":null,"url":null,"abstract":"<div><p>The frequency of detection and concentrations of bifenthrin, a pyrethroid insecticide, in the waterways inhabited by the endangered species, steelhead trout (<em>Oncorhynchus mykiss</em>), has become a significant concern for regulatory agencies. Endocrine disruption has been observed with estrogenic and anti-estrogenic responses in fish species at different life stages. Since several studies have indicated alterations in dopaminergic signaling associated with endocrine responses, juvenile steelhead were exposed to environmentally relevant concentrations of 60 or 120 ng/L bifenthrin for two weeks. Fish brains were assessed for dopamine levels and the expression of genes involved in dopaminergic and estrogenic processes, such as catechol-<em>o</em>-methyltransferase (<em>comt</em>) and monoamine oxidase (<em>mao</em>). Vitellogenin (<em>vtg</em>) and estrogenic receptors (<em>ERα1</em>, <em>ERβ1</em>, and <em>ERβ2</em>) were also evaluated in livers of the animals. Dopamine concentrations were significantly higher in fish brains following bifenthrin exposure. Consistent with a reduction in dopamine clearance, there was a significant decrease in the mRNA expression of <em>comt</em> with increased bifenthrin concentration. Hepatic expression of <em>ERα1</em> and <em>ERβ2</em> mRNA was significantly decreased with increased bifenthrin concentration. These data support the possible mechanism of bifenthrin altering the dopaminergic pathway at low ng/L concentrations, in juvenile steelhead, which could interfere with endocrine feedback loops. These findings support the need for and importance of identifying species and life stage differences in pesticide modes of action to reduce uncertainties in risk assessments.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1532045624001637/pdfft?md5=0af76be0833dea7b02830077afe0b79a&pid=1-s2.0-S1532045624001637-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001637","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The frequency of detection and concentrations of bifenthrin, a pyrethroid insecticide, in the waterways inhabited by the endangered species, steelhead trout (Oncorhynchus mykiss), has become a significant concern for regulatory agencies. Endocrine disruption has been observed with estrogenic and anti-estrogenic responses in fish species at different life stages. Since several studies have indicated alterations in dopaminergic signaling associated with endocrine responses, juvenile steelhead were exposed to environmentally relevant concentrations of 60 or 120 ng/L bifenthrin for two weeks. Fish brains were assessed for dopamine levels and the expression of genes involved in dopaminergic and estrogenic processes, such as catechol-o-methyltransferase (comt) and monoamine oxidase (mao). Vitellogenin (vtg) and estrogenic receptors (ERα1, ERβ1, and ERβ2) were also evaluated in livers of the animals. Dopamine concentrations were significantly higher in fish brains following bifenthrin exposure. Consistent with a reduction in dopamine clearance, there was a significant decrease in the mRNA expression of comt with increased bifenthrin concentration. Hepatic expression of ERα1 and ERβ2 mRNA was significantly decreased with increased bifenthrin concentration. These data support the possible mechanism of bifenthrin altering the dopaminergic pathway at low ng/L concentrations, in juvenile steelhead, which could interfere with endocrine feedback loops. These findings support the need for and importance of identifying species and life stage differences in pesticide modes of action to reduce uncertainties in risk assessments.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.