Mouse adaptation of human inflammatory bowel diseases microbiota enhances colonization efficiency and alters microbiome aggressiveness depending on the recipient colonic inflammatory environment.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY Microbiome Pub Date : 2024-08-07 DOI:10.1186/s40168-024-01857-2
Simon M Gray, Anh D Moss, Jeremy W Herzog, Saori Kashiwagi, Bo Liu, Jacqueline B Young, Shan Sun, Aadra P Bhatt, Anthony A Fodor, R Balfour Sartor
{"title":"Mouse adaptation of human inflammatory bowel diseases microbiota enhances colonization efficiency and alters microbiome aggressiveness depending on the recipient colonic inflammatory environment.","authors":"Simon M Gray, Anh D Moss, Jeremy W Herzog, Saori Kashiwagi, Bo Liu, Jacqueline B Young, Shan Sun, Aadra P Bhatt, Anthony A Fodor, R Balfour Sartor","doi":"10.1186/s40168-024-01857-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis.</p><p><strong>Results: </strong>Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10<sup>-/-</sup> mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10<sup>-/-</sup> mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10<sup>-/-</sup> host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10<sup>-/-</sup> mice than the distinct microbiota reassembled in non-inflamed WT hosts.</p><p><strong>Conclusions: </strong>Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"147"},"PeriodicalIF":13.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01857-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis.

Results: Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts.

Conclusions: Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠对人类炎症性肠病微生物群的适应可提高定植效率,并根据受体结肠炎症环境改变微生物群的攻击性。
背景:要了解炎症性肠病(IBD)中肠道炎症和微生物菌群失调的因果关系,就需要建立一个可重复的人类微生物群驱动的实验性结肠炎小鼠模型:我们的研究表明,人类粪便微生物群移植(FMT)的转移效率是人类微生物群相关(HMA)小鼠实验变异性的一个未被充分重视的来源。汇集的人类 IBD 患者粪便微生物群移植到无菌(GF)小鼠体内,其扩增子序列变异(ASV)水平的转移效率很低,导致 HMA Il-10-/- 小鼠体内微生物群组成和结肠炎严重程度的受体间差异很大。相比之下,小鼠对小鼠适配人类 IBD 患者微生物群的转移效率高、组成变异性低,导致受体 Il-10-/- 小鼠的结肠炎表型高度一致且可重现。与小鼠适应型 FMT 相比,人鼠 FMT 的移植随单个移植事件的随机变化更大。人鼠FMT造成了种群瓶颈,微生物群组成的重新组合具有宿主炎症环境的特异性。与在未发炎的 WT 宿主中重新组合的独特微生物群相比,在发炎的 Il-10-/- 宿主中进行小鼠适应性移植重新组合的微生物群更具侵袭性,在连续移植给 Il-10-/- 小鼠的过程中会诱发更严重的结肠炎:我们的研究结果支持一种 IBD 发病模型,在该模型中,宿主炎症会促进具有攻击性的常驻细菌,而宿主炎症又会进一步推动因肠道炎症而加剧的菌群失调的前馈过程。这一模型意味着,有效治疗 IBD 需要同时治疗失调的宿主免疫反应和炎症驱动的侵袭性微生物群。我们提出,我们的小鼠适应人类微生物群模型是研究人类微生物群驱动的疾病表型的一个优化、可重现和严格的系统,可推广到其他人类微生物群调节疾病的小鼠模型,包括代谢综合征/肥胖症、糖尿病、自身免疫性疾病和癌症。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
期刊最新文献
Ileal microbial microbiome and its secondary bile acids modulate susceptibility to nonalcoholic steatohepatitis in dairy goats. The links between dietary diversity and RNA virus diversity harbored by the great evening bat (Ia io). From grasslands to genes: exploring the major microbial drivers of antibiotic-resistance in microhabitats under persistent overgrazing. Correction: Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures. The intestinal microbiome and Cetobacterium somerae inhibit viral infection through TLR2-type I IFN signaling axis in zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1