Tracking gonadal development in fish: An in vivo MRI study on polar cod, Boreogadus saida (Lepechin, 1774).

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2024-08-07 DOI:10.1002/nbm.5231
Nicole Vogt, Felizitas C Wermter, Jasmine Nahrgang, Daniela Storch, Christian Bock
{"title":"Tracking gonadal development in fish: An in vivo MRI study on polar cod, Boreogadus saida (Lepechin, 1774).","authors":"Nicole Vogt, Felizitas C Wermter, Jasmine Nahrgang, Daniela Storch, Christian Bock","doi":"10.1002/nbm.5231","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) was applied to determine the sex of polar cod (Boreogadus saida Lepechin, 1774) (Actinopterygii: Gadidae) and to follow the gonadal development in individual animals over time. Individual unanaesthetised fish were transferred to a measurement chamber inside a preclinical 9.4 T MRI scanner and continuously perfused with aerated seawater. A screening procedure at an average of 3.5 h, consisting of a set of MRI scans of different orientations, was repeated every 4 weeks on the same set of reproducing B. saida (n = 10) with a body length of about 20 cm. Adapted multi-slice flow-compensated fast low-angle shot (FcFLASH) and rapid acquisition with relaxation enhancement (RARE) protocols with an in-plane resolution of 313 μm and an acquisition time of 2.5 min were used to visualise the morphology of various organs, including the gonads within the field of view (FOV). The MR images provided high resolution, enabling specific sex determination, calculation of gonad volumes, and determination of oocyte sizes. Gonad maturation was followed over 4 months from November 2021 until shortly before spawning in February 2022. The gonad volume increased by 2.3-25.5% for males and by 11.5-760.7% for females during the observation period. From October to February, the oocyte diameter increased from 427 μm (n = 1) to 1346 ± 27 μm (n = 4). Interestingly, individual oocytes showed changes in MR contrast over time that can be attributed to the morphological development of the oocytes. The results fit well with previous literature data from classical invasive studies. The presented approach has great potential for various ecophysiological applications such as monitoring natural or delayed development of internal organs or sex determination under different environmental conditions.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) was applied to determine the sex of polar cod (Boreogadus saida Lepechin, 1774) (Actinopterygii: Gadidae) and to follow the gonadal development in individual animals over time. Individual unanaesthetised fish were transferred to a measurement chamber inside a preclinical 9.4 T MRI scanner and continuously perfused with aerated seawater. A screening procedure at an average of 3.5 h, consisting of a set of MRI scans of different orientations, was repeated every 4 weeks on the same set of reproducing B. saida (n = 10) with a body length of about 20 cm. Adapted multi-slice flow-compensated fast low-angle shot (FcFLASH) and rapid acquisition with relaxation enhancement (RARE) protocols with an in-plane resolution of 313 μm and an acquisition time of 2.5 min were used to visualise the morphology of various organs, including the gonads within the field of view (FOV). The MR images provided high resolution, enabling specific sex determination, calculation of gonad volumes, and determination of oocyte sizes. Gonad maturation was followed over 4 months from November 2021 until shortly before spawning in February 2022. The gonad volume increased by 2.3-25.5% for males and by 11.5-760.7% for females during the observation period. From October to February, the oocyte diameter increased from 427 μm (n = 1) to 1346 ± 27 μm (n = 4). Interestingly, individual oocytes showed changes in MR contrast over time that can be attributed to the morphological development of the oocytes. The results fit well with previous literature data from classical invasive studies. The presented approach has great potential for various ecophysiological applications such as monitoring natural or delayed development of internal organs or sex determination under different environmental conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
追踪鱼类的性腺发育:对极地鳕鱼 Boreogadus saida (Lepechin, 1774) 的体内磁共振成像研究。
磁共振成像(MRI)被用于确定极地鳕鱼(Boreogadus saida Lepechin, 1774)(翼手目:鳕科)的性别,并随时间跟踪个体动物的性腺发育情况。未经麻醉的鱼个体被转移到临床前 9.4 T 核磁共振成像扫描仪内的测量室,并持续灌注充气海水。在同一组体长约 20 厘米的繁殖 B. saida(n = 10)上,每 4 周重复一次平均 3.5 小时的筛选程序,包括一组不同方向的磁共振成像扫描。采用经调整的多层流补偿快速低角度扫描(FcFLASH)和弛豫增强快速采集(RARE)方案,平面内分辨率为 313 μm,采集时间为 2.5 分钟,以观察各种器官的形态,包括视野(FOV)内的性腺。核磁共振图像分辨率很高,可用于确定具体性别、计算性腺体积和确定卵母细胞大小。从 2021 年 11 月到 2022 年 2 月产卵前不久的 4 个月中,对性腺成熟情况进行了跟踪。在观察期间,雄性性腺体积增加了 2.3-25.5%,雌性性腺体积增加了 11.5-760.7%。从 10 月到 2 月,卵母细胞直径从 427 μm(n = 1)增加到 1346 ± 27 μm(n = 4)。有趣的是,随着时间的推移,单个卵母细胞的磁共振对比度会发生变化,这可能与卵母细胞的形态发育有关。结果与之前经典侵入式研究的文献数据非常吻合。该方法在各种生态生理学应用中具有巨大潜力,如监测内脏器官的自然或延迟发育,或在不同环境条件下进行性别鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
Measuring cerebral enzymatic activity, brain pH and extracranial muscle metabolism with hyperpolarized 13C-pyruvate. Fractal dimension and lacunarity measures of glioma subcomponents are discriminative of the grade of gliomas and IDH status. Influence of echo time on pulmonary ventilation and perfusion derived by phase-resolved functional lung (PREFUL) MRI using multi-echo ultrashort echo time acquisition. Validation of an ultrahigh contrast divided subtracted inversion recovery technique using a standard T1 phantom. Accelerated 2D radial Look-Locker T1 mapping using a deep learning-based rapid inversion recovery sampling technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1