首页 > 最新文献

NMR in Biomedicine最新文献

英文 中文
Fractal dimension and lacunarity measures of glioma subcomponents are discriminative of the grade of gliomas and IDH status. 胶质瘤亚组分的分形维度和裂隙度量可区分胶质瘤的等级和 IDH 状态。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-10-05 DOI: 10.1002/nbm.5272
Neha Yadav, Ankit Mohanty, Aswin V, Vivek Tiwari

Since the overall glioma mass and its subcomponents-enhancing region (malignant part of the tumor), non-enhancing (less aggressive tumor cells), necrotic core (dead cells), and edema (water deposition)-are complex and irregular structures, non-Euclidean geometric measures such as fractal dimension (FD or "fractality") and lacunarity are needed to quantify their structural complexity. Fractality measures the extent of structural irregularity, while lacunarity measures the spatial distribution or gaps. The complex geometric patterns of the glioma subcomponents may be closely associated with the grade and molecular landscape. Therefore, we measured FD and lacunarity in the glioma subcomponents and developed machine learning models to discriminate between tumor grades and isocitrate dehydrogenase (IDH) gene status. 3D fractal dimension (FD3D) and lacunarity (Lac3D) were measured for the enhancing, non-enhancing plus necrotic core, and edema-subcomponents using preoperative structural-MRI obtained from the The Cancer Genome Atlas (TCGA) and University of California San Francisco Preoperative Diffuse Glioma MRI (UCSF-PDGM) glioma cohorts. The FD3D and Lac3D measures of the tumor-subcomponents were then compared across glioma grades (HGGs: high-grade gliomas vs. LGGs: low-grade gliomas) and IDH status (mutant vs. wild type). Using these measures, machine learning platforms discriminative of glioma grade and IDH status were developed. Kaplan-Meier survival analysis was used to assess the prognostic significance of FD3D and Lac3D measurements. HGG exhibited significantly higher fractality and lower lacunarity in the enhancing subcomponent, along with lower fractality in the non-enhancing subcomponent compared to LGG. This suggests that a highly irregular and complex geometry in the enhancing-subcomponent is a characteristic feature of HGGs. A comparison of FD3D and Lac3D between IDH-wild type and IDH-mutant gliomas revealed that mutant gliomas had ~2.5-fold lower FD3D in the enhancing-subcomponent and higher FD3D with lower Lac3D in the non-enhancing subcomponent, indicating a less complex and smooth enhancing subcomponent, and a more continuous non-enhancing subcomponent as features of IDH-mutant gliomas. Supervised ML models using FD3D from both the enhancing and non-enhancing subcomponents together demonstrated high-sensitivity in discriminating glioma grades (~97.9%) and IDH status (~94.4%). A combined fractal estimation of the enhancing and non-enhancing subcomponents using MR images could serve as a non-invasive, precise, and quantitative measure for discriminating glioma grade and IDH status. The combination of 2-hydroxyglutarate-magnetic resonance spectroscopy (2HG-MRS) with FD3D and Lac3D quantification may be established as a robust imaging signature for glioma subtyping.

由于胶质瘤的整体肿块及其子部分--增强区(肿瘤的恶性部分)、非增强区(侵袭性较低的肿瘤细胞)、坏死核心(死细胞)和水肿(水沉积)--都是复杂而不规则的结构,因此需要分形维度(FD 或 "分形")和空隙度等非欧几里得几何测量方法来量化其结构的复杂性。分形度测量结构不规则的程度,而空白度测量空间分布或间隙。胶质瘤亚组分的复杂几何模式可能与分级和分子结构密切相关。因此,我们测量了胶质瘤亚组分的分形维度和空隙度,并开发了机器学习模型来区分肿瘤分级和异柠檬酸脱氢酶(IDH)基因状态。利用从癌症基因组图谱(TCGA)和加州大学旧金山分校术前弥漫性胶质瘤磁共振成像(UCSF-PDGM)胶质瘤队列中获得的术前结构磁共振成像,测量了增强、非增强加坏死核心和水肿亚组分的三维分形维度(FD3D)和裂隙度(Lac3D)。然后比较了不同胶质瘤等级(HGGs:高级别胶质瘤与 LGGs:低级别胶质瘤)和 IDH 状态(突变型与野生型)下肿瘤亚组分的 FD3D 和 Lac3D 测量值。利用这些指标,开发出了可区分胶质瘤等级和 IDH 状态的机器学习平台。Kaplan-Meier生存分析用于评估FD3D和Lac3D测量值的预后意义。与LGG相比,HGG在增强亚组分中表现出明显较高的断裂率和较低的裂隙度,而在非增强亚组分中则表现出较低的断裂率。这表明,增强子成分中高度不规则和复杂的几何形状是 HGG 的一个特征。对IDH野生型和IDH突变型胶质瘤的FD3D和Lac3D进行比较后发现,突变型胶质瘤增强亚组分的FD3D低2.5倍,而非增强亚组分的FD3D更高,Lac3D更低,这表明IDH突变型胶质瘤的特征是增强亚组分不那么复杂和光滑,而非增强亚组分更连续。使用增强和非增强子成分的 FD3D 一起建立的有监督 ML 模型在判别胶质瘤等级(约 97.9%)和 IDH 状态(约 94.4%)方面表现出较高的灵敏度。利用磁共振图像对增强和非增强子成分进行综合分形估算可作为一种非侵入性、精确和定量的方法来判别胶质瘤的分级和IDH状态。2-羟基戊二酸-磁共振波谱(2HG-MRS)与 FD3D 和 Lac3D 定量相结合,可作为胶质瘤亚型鉴定的可靠成像特征。
{"title":"Fractal dimension and lacunarity measures of glioma subcomponents are discriminative of the grade of gliomas and IDH status.","authors":"Neha Yadav, Ankit Mohanty, Aswin V, Vivek Tiwari","doi":"10.1002/nbm.5272","DOIUrl":"10.1002/nbm.5272","url":null,"abstract":"<p><p>Since the overall glioma mass and its subcomponents-enhancing region (malignant part of the tumor), non-enhancing (less aggressive tumor cells), necrotic core (dead cells), and edema (water deposition)-are complex and irregular structures, non-Euclidean geometric measures such as fractal dimension (FD or \"fractality\") and lacunarity are needed to quantify their structural complexity. Fractality measures the extent of structural irregularity, while lacunarity measures the spatial distribution or gaps. The complex geometric patterns of the glioma subcomponents may be closely associated with the grade and molecular landscape. Therefore, we measured FD and lacunarity in the glioma subcomponents and developed machine learning models to discriminate between tumor grades and isocitrate dehydrogenase (IDH) gene status. 3D fractal dimension (FD3D) and lacunarity (Lac3D) were measured for the enhancing, non-enhancing plus necrotic core, and edema-subcomponents using preoperative structural-MRI obtained from the The Cancer Genome Atlas (TCGA) and University of California San Francisco Preoperative Diffuse Glioma MRI (UCSF-PDGM) glioma cohorts. The FD3D and Lac3D measures of the tumor-subcomponents were then compared across glioma grades (HGGs: high-grade gliomas vs. LGGs: low-grade gliomas) and IDH status (mutant vs. wild type). Using these measures, machine learning platforms discriminative of glioma grade and IDH status were developed. Kaplan-Meier survival analysis was used to assess the prognostic significance of FD3D and Lac3D measurements. HGG exhibited significantly higher fractality and lower lacunarity in the enhancing subcomponent, along with lower fractality in the non-enhancing subcomponent compared to LGG. This suggests that a highly irregular and complex geometry in the enhancing-subcomponent is a characteristic feature of HGGs. A comparison of FD3D and Lac3D between IDH-wild type and IDH-mutant gliomas revealed that mutant gliomas had ~2.5-fold lower FD3D in the enhancing-subcomponent and higher FD3D with lower Lac3D in the non-enhancing subcomponent, indicating a less complex and smooth enhancing subcomponent, and a more continuous non-enhancing subcomponent as features of IDH-mutant gliomas. Supervised ML models using FD3D from both the enhancing and non-enhancing subcomponents together demonstrated high-sensitivity in discriminating glioma grades (~97.9%) and IDH status (~94.4%). A combined fractal estimation of the enhancing and non-enhancing subcomponents using MR images could serve as a non-invasive, precise, and quantitative measure for discriminating glioma grade and IDH status. The combination of 2-hydroxyglutarate-magnetic resonance spectroscopy (2HG-MRS) with FD3D and Lac3D quantification may be established as a robust imaging signature for glioma subtyping.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5272"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values. 使用深度学习模型在定量 MR T1 图上自动分割左心室心肌,并计算径向 T1 和 ECV 值。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-04 DOI: 10.1002/nbm.5230
Raufiya Jafari, Ankit Kandpal, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh

Native T1 mapping is a non-invasive technique used for early detection of diffused myocardial abnormalities, and it provides baseline tissue characterization. Post-contrast T1 mapping enhances tissue differentiation, enables extracellular volume (ECV) calculation, and improves myocardial viability assessment. Accurate and precise segmenting of the left ventricular (LV) myocardium on T1 maps is crucial for assessing myocardial tissue characteristics and diagnosing cardiovascular diseases (CVD). This study presents a deep learning (DL)-based pipeline for automatically segmenting LV myocardium on T1 maps and automatic computation of radial T1 and ECV values. The study employs a multicentric dataset consisting of retrospective multiparametric MRI data of 332 subjects to develop and assess the performance of the proposed method. The study compared DL architectures U-Net and Deep Res U-Net for LV myocardium segmentation, which achieved a dice similarity coefficient of 0.84 ± 0.43 and 0.85 ± 0.03, respectively. The dice similarity coefficients computed for radial sub-segmentation of the LV myocardium on basal, mid-cavity, and apical slices were 0.77 ± 0.21, 0.81 ± 0.17, and 0.61 ± 0.14, respectively. The t-test performed between ground truth vs. predicted values of native T1, post-contrast T1, and ECV showed no statistically significant difference (p > 0.05) for any of the radial sub-segments. The proposed DL method leverages the use of quantitative T1 maps for automatic LV myocardium segmentation and accurately computing radial T1 and ECV values, highlighting its potential for assisting radiologists in objective cardiac assessment and, hence, in CVD diagnostics.

原位 T1 映像是一种无创技术,用于早期检测弥漫性心肌异常,并提供基线组织特征。对比后 T1 映射可增强组织分化,计算细胞外容积 (ECV),并改善心肌活力评估。在T1图上准确、精确地分割左心室(LV)心肌对于评估心肌组织特征和诊断心血管疾病(CVD)至关重要。本研究提出了一种基于深度学习(DL)的管道,用于自动分割 T1 图上的左心室心肌,并自动计算径向 T1 值和 ECV 值。该研究采用了由 332 名受试者的回顾性多参数 MRI 数据组成的多中心数据集,以开发和评估所提出方法的性能。研究比较了用于左心室心肌分割的 DL 架构 U-Net 和 Deep Res U-Net,它们的骰子相似系数分别为 0.84 ± 0.43 和 0.85 ± 0.03。在基底、中腔和心尖切片上对左心室心肌进行径向细分计算得出的骰子相似系数分别为 0.77 ± 0.21、0.81 ± 0.17 和 0.61 ± 0.14。在原始 T1、对比后 T1 和 ECV 的地面真实值与预测值之间进行的 t 检验显示,任何径向亚节段都没有统计学意义上的显著差异(p > 0.05)。所提出的 DL 方法利用定量 T1 图自动分割左心室心肌并准确计算径向 T1 和 ECV 值,突出了其在协助放射科医生进行客观心脏评估,进而进行心血管疾病诊断方面的潜力。
{"title":"Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values.","authors":"Raufiya Jafari, Ankit Kandpal, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh","doi":"10.1002/nbm.5230","DOIUrl":"10.1002/nbm.5230","url":null,"abstract":"<p><p>Native T1 mapping is a non-invasive technique used for early detection of diffused myocardial abnormalities, and it provides baseline tissue characterization. Post-contrast T1 mapping enhances tissue differentiation, enables extracellular volume (ECV) calculation, and improves myocardial viability assessment. Accurate and precise segmenting of the left ventricular (LV) myocardium on T1 maps is crucial for assessing myocardial tissue characteristics and diagnosing cardiovascular diseases (CVD). This study presents a deep learning (DL)-based pipeline for automatically segmenting LV myocardium on T1 maps and automatic computation of radial T1 and ECV values. The study employs a multicentric dataset consisting of retrospective multiparametric MRI data of 332 subjects to develop and assess the performance of the proposed method. The study compared DL architectures U-Net and Deep Res U-Net for LV myocardium segmentation, which achieved a dice similarity coefficient of 0.84 ± 0.43 and 0.85 ± 0.03, respectively. The dice similarity coefficients computed for radial sub-segmentation of the LV myocardium on basal, mid-cavity, and apical slices were 0.77 ± 0.21, 0.81 ± 0.17, and 0.61 ± 0.14, respectively. The t-test performed between ground truth vs. predicted values of native T1, post-contrast T1, and ECV showed no statistically significant difference (p > 0.05) for any of the radial sub-segments. The proposed DL method leverages the use of quantitative T1 maps for automatic LV myocardium segmentation and accurately computing radial T1 and ECV values, highlighting its potential for assisting radiologists in objective cardiac assessment and, hence, in CVD diagnostics.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5230"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CEST effect of dimethyl sulfoxide at negative offset frequency. 负偏移频率下二甲基亚砜的 CEST 效应。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-12 DOI: 10.1002/nbm.5238
Haoyun Su, Lok Hin Law, Yang Liu, Jianpan Huang, Kannie W Y Chan

Dimethyl sulfoxide (DMSO) has wide biomedical applications such as cryoprotectant and hydrophobic drug carrier. Here, we report for the first time that DMSO can generate a distinctive chemical exchange saturation transfer (CEST) signal at around -2 ppm. Structural analogs of DMSO, including aprotic and protic solvents, also demonstrated CEST signals from -1.4 to -3.8 ppm. When CEST detectable barbituric acid (BA) was dissolved in DMSO solution and was co-loaded to liposome, two obvious peaks at 5 and -2 ppm were observed, indicating that DMSO and related solvent system can be monitored in a label-free manner via CEST, which can be further applied to imaging drug nanocarriers. With reference to previous studies, there could be molecular interactions or magnetization transfer pathways, such as the relayed nuclear Overhauser enhancement (rNOE), that lead to this detectable CEST contrast at negative offset frequencies of the Z-spectrum. Our findings suggest that small molecules of organic solvents could be involved in magnetization transfer processes with water and readily detected by CEST magnetic resonance imaging (MRI), providing a new avenue for detecting solvent-water and solvent-drug interactions.

二甲基亚砜(DMSO)具有广泛的生物医学用途,如低温保护剂和疏水性药物载体。在这里,我们首次报告了二甲基亚砜能在-2 ppm左右产生独特的化学交换饱和转移(CEST)信号。二甲基亚砜的结构类似物,包括烷基和质基溶剂,也显示出 -1.4 至 -3.8 ppm 的 CEST 信号。当 CEST 检测巴比妥酸(BA)溶于二甲基亚砜溶液并共同负载到脂质体中时,在 5 和 -2 ppm 处观察到两个明显的峰,这表明二甲基亚砜及相关溶剂系统可通过 CEST 以无标记的方式进行监测,并可进一步应用于药物纳米载体的成像。参考之前的研究,可能存在分子相互作用或磁化传递途径,如中继核奥弗霍瑟增强(rNOE),从而导致在 Z 光谱的负偏移频率上出现这种可检测到的 CEST 对比。我们的研究结果表明,有机溶剂的小分子可能参与了与水的磁化传递过程,并很容易被 CEST 磁共振成像 (MRI) 检测到,这为检测溶剂-水和溶剂-药物相互作用提供了一条新途径。
{"title":"CEST effect of dimethyl sulfoxide at negative offset frequency.","authors":"Haoyun Su, Lok Hin Law, Yang Liu, Jianpan Huang, Kannie W Y Chan","doi":"10.1002/nbm.5238","DOIUrl":"10.1002/nbm.5238","url":null,"abstract":"<p><p>Dimethyl sulfoxide (DMSO) has wide biomedical applications such as cryoprotectant and hydrophobic drug carrier. Here, we report for the first time that DMSO can generate a distinctive chemical exchange saturation transfer (CEST) signal at around -2 ppm. Structural analogs of DMSO, including aprotic and protic solvents, also demonstrated CEST signals from -1.4 to -3.8 ppm. When CEST detectable barbituric acid (BA) was dissolved in DMSO solution and was co-loaded to liposome, two obvious peaks at 5 and -2 ppm were observed, indicating that DMSO and related solvent system can be monitored in a label-free manner via CEST, which can be further applied to imaging drug nanocarriers. With reference to previous studies, there could be molecular interactions or magnetization transfer pathways, such as the relayed nuclear Overhauser enhancement (rNOE), that lead to this detectable CEST contrast at negative offset frequencies of the Z-spectrum. Our findings suggest that small molecules of organic solvents could be involved in magnetization transfer processes with water and readily detected by CEST magnetic resonance imaging (MRI), providing a new avenue for detecting solvent-water and solvent-drug interactions.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5238"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvements in precision and accuracy of complex- relative to real-domain linear combination model spectral fitting not necessarily recovered by zero filling. 复域线性组合模型光谱拟合的精度和准确度相对于实域线性组合模型光谱拟合的精度和准确度的提高并不一定是通过零填充恢复的。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-13 DOI: 10.1002/nbm.5236
Leonardo Campos, Kelley M Swanberg, Martin Gajdošík, Karl Landheer, Christoph Juchem

Although the information obtained from in vivo proton magnetic resonance spectroscopy (1H MRS) presents a complex-valued spectrum, spectral quantification generally employs linear combination model (LCM) fitting using the real spectrum alone. There is currently no known investigation comparing fit results obtained from LCM fitting over the full complex data versus the real data and how these results might be affected by common spectral preprocessing procedure zero filling. Here, we employ linear combination modeling of simulated and measured spectral data to examine two major ideas: first, whether use of the full complex rather than real-only data can provide improvements in quantification by linear combination modeling and, second, to what extent zero filling might influence these improvements. We examine these questions by evaluating the errors of linear combination model fits in the complex versus real domains against three classes of synthetic data: simulated Lorentzian singlets, simulated metabolite spectra excluding the baseline, and simulated metabolite spectra including measured in vivo baselines. We observed that complex fitting provides consistent improvements in fit accuracy and precision across all three data types. While zero filling obviates the accuracy and precision benefit of complex fitting for Lorentzian singlets and metabolite spectra lacking baselines, it does not necessarily do so for complex spectra including measured in vivo baselines. Overall, performing linear combination modeling in the complex domain can improve metabolite quantification accuracy relative to real fits alone. While this benefit can be similarly achieved via zero filling for some spectra with flat baselines, this is not invariably the case for all baseline types exhibited by measured in vivo data.

虽然从活体质子磁共振光谱(1H MRS)中获得的信息呈现的是复值光谱,但光谱量化通常仅使用真实光谱进行线性组合模型(LCM)拟合。目前还没有任何已知的研究能比较 LCM 拟合全复值数据与真实数据的拟合结果,以及这些结果如何受到常见光谱预处理程序零填充的影响。在此,我们采用模拟和测量光谱数据的线性组合建模来研究两个主要观点:第一,使用全复数数据而非仅真实数据是否能改善线性组合建模的量化效果;第二,零填充会在多大程度上影响这些改善效果。我们根据三类合成数据评估了复合域与真实域线性组合模型拟合的误差,从而对这些问题进行了研究:模拟洛伦兹单线、不包括基线的模拟代谢物光谱以及包括测量的体内基线的模拟代谢物光谱。我们发现,在所有三种数据类型中,复合拟合在拟合准确度和精确度方面都有一致的提高。对于洛伦兹单影和缺乏基线的代谢物光谱,零填充使复合拟合的准确度和精确度不再有优势,但对于包括测得的体内基线的复合光谱,零填充则不一定有优势。总体而言,在复合域中进行线性组合建模比单独进行实际拟合更能提高代谢物定量的准确性。虽然对于某些基线平坦的光谱,通过零填充同样可以实现这一优势,但对于测量的体内数据所显示的所有基线类型,情况并非总是如此。
{"title":"Improvements in precision and accuracy of complex- relative to real-domain linear combination model spectral fitting not necessarily recovered by zero filling.","authors":"Leonardo Campos, Kelley M Swanberg, Martin Gajdošík, Karl Landheer, Christoph Juchem","doi":"10.1002/nbm.5236","DOIUrl":"10.1002/nbm.5236","url":null,"abstract":"<p><p>Although the information obtained from in vivo proton magnetic resonance spectroscopy (<sup>1</sup>H MRS) presents a complex-valued spectrum, spectral quantification generally employs linear combination model (LCM) fitting using the real spectrum alone. There is currently no known investigation comparing fit results obtained from LCM fitting over the full complex data versus the real data and how these results might be affected by common spectral preprocessing procedure zero filling. Here, we employ linear combination modeling of simulated and measured spectral data to examine two major ideas: first, whether use of the full complex rather than real-only data can provide improvements in quantification by linear combination modeling and, second, to what extent zero filling might influence these improvements. We examine these questions by evaluating the errors of linear combination model fits in the complex versus real domains against three classes of synthetic data: simulated Lorentzian singlets, simulated metabolite spectra excluding the baseline, and simulated metabolite spectra including measured in vivo baselines. We observed that complex fitting provides consistent improvements in fit accuracy and precision across all three data types. While zero filling obviates the accuracy and precision benefit of complex fitting for Lorentzian singlets and metabolite spectra lacking baselines, it does not necessarily do so for complex spectra including measured in vivo baselines. Overall, performing linear combination modeling in the complex domain can improve metabolite quantification accuracy relative to real fits alone. While this benefit can be similarly achieved via zero filling for some spectra with flat baselines, this is not invariably the case for all baseline types exhibited by measured in vivo data.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5236"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear Bloch-Siegert phase-encoded low-field MRI: RF coils, pulse sequence, and image reconstruction. 线性布洛赫-西格特相位编码低场磁共振成像:射频线圈、脉冲序列和图像重建。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-26 DOI: 10.1002/nbm.5245
Sai Abitha Srinivas, Jonathan B Martin, Christopher E Vaughn, William A Grissom

Conventional B 0 gradient systems have several weaknesses including high cost and bulk. As a step towards addressing these while providing new degrees of freedom for spatial encoding and system design in Magnetic Resonance Imaging (MRI), a radio frequency (RF) gradient encoding system and pulse sequence for phase encoding using the Bloch-Siegert (BS) shift were developed. Optimized BS spatial encoding coils with bucking windings (counter-wound loops) were designed and constructed, along with compatible homogeneous imaging coils for excitation and signal reception. Two coil systems were developed: one for phantom imaging and a second for human wrist imaging. BS phase-encoded imaging and BS RF pulse simulations were performed. Pulse sequences were designed for linear stepping in k-space and implemented on a 47.5-mT scanner to image resolution phantoms in both coil setups. Reconstructions were performed using both the full B 1 + -based encoding fields for each BS pulse amplitude and using inverse discrete Fourier transforms. A B 0 gradient was used for frequency encoding during signal readout, and the third axis was projected. Specific absorption ratio (SAR) calculations were performed for the wrist coil to determine the safety of BS-based RF encoding for B 0 fields in the low field MRI regime. The optimized RF spatial encoding coils resulted in higher linearity ( R 2 = 0.9981 and 0.9921 in the phantom and wrist coils, respectively) than coils used in previous work. The phantom and wrist imaging coils were validated in simulations and experimentally to produce a peak B 1 + = 1.35 G and 0.8 G with 12-W input power, respectively, in the field-of-view (length = 11 cm) used for imaging. Nominal imaging resolutions of 5.22 and 7.21 mm were, respectively, achieved by the two-coil systems in the RF phase-encoded dimension. Coil systems, pulse sequences, and image reconstructions were developed for linear RF phase encoding using the BS shift and validated using a 47.5-mT open low field scanner, establishing a key component required for B 0  gradient-free imaging at low B 0  field strengths.

传统的 B 0 $$ {B}_0 $$ 梯度系统有几个缺点,包括成本高和体积大。为了解决这些问题,同时为磁共振成像(MRI)中的空间编码和系统设计提供新的自由度,我们开发了一种射频(RF)梯度编码系统和使用布洛赫-西格特(BS)移位进行相位编码的脉冲序列。设计并建造了带有降压绕组(反绕线圈)的优化 BS 空间编码线圈,以及用于激励和信号接收的兼容同质成像线圈。开发了两个线圈系统:一个用于模型成像,另一个用于人体手腕成像。进行了 BS 相位编码成像和 BS 射频脉冲模拟。脉冲序列设计用于 k 空间的线性步进,并在 47.5 mT 扫描仪上实施,以在两个线圈设置中对分辨率模型进行成像。对每个 BS 脉冲振幅使用基于全 B 1 + $$ {B}_1^{+} $$ 的编码场,并使用反离散傅里叶变换进行重建。在信号读出过程中,使用 B 0 $$ {B}_0 $$ 梯度进行频率编码,并对第三轴进行投影。对腕部线圈进行了比吸收比(SAR)计算,以确定基于 BS 的射频编码在低磁场 MRI 机制中对 B 0 $$ {B}_0 $$ 场的安全性。优化后的射频空间编码线圈的线性度(R 2 = 0.9981 $$ {R}^2=0.9981 $$ 和 R 2 = 0.9981 $$ {R}^2=0.9921)高于之前工作中使用的线圈。经模拟和实验验证,幻像和腕部成像线圈在用于成像的视场(长度 = 11 厘米)中,以 12 W 输入功率分别产生峰值 B 1 + = 1.35 $$ {B}_1^{+}=1.35 $$ G 和 0.8 G。在射频相位编码维度上,双线圈系统的名义成像分辨率分别为 5.22 毫米和 7.21 毫米。利用 BS 移位为线性射频相位编码开发了线圈系统、脉冲序列和图像重建,并使用 47.5 mT 开放式低场扫描仪进行了验证,从而确定了在低 B 0 $$ {B}_0 $$ 场强下进行无梯度成像所需的关键组件。
{"title":"Linear Bloch-Siegert phase-encoded low-field MRI: RF coils, pulse sequence, and image reconstruction.","authors":"Sai Abitha Srinivas, Jonathan B Martin, Christopher E Vaughn, William A Grissom","doi":"10.1002/nbm.5245","DOIUrl":"10.1002/nbm.5245","url":null,"abstract":"<p><p>Conventional <math> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> </math> gradient systems have several weaknesses including high cost and bulk. As a step towards addressing these while providing new degrees of freedom for spatial encoding and system design in Magnetic Resonance Imaging (MRI), a radio frequency (RF) gradient encoding system and pulse sequence for phase encoding using the Bloch-Siegert (BS) shift were developed. Optimized BS spatial encoding coils with bucking windings (counter-wound loops) were designed and constructed, along with compatible homogeneous imaging coils for excitation and signal reception. Two coil systems were developed: one for phantom imaging and a second for human wrist imaging. BS phase-encoded imaging and BS RF pulse simulations were performed. Pulse sequences were designed for linear stepping in k-space and implemented on a 47.5-mT scanner to image resolution phantoms in both coil setups. Reconstructions were performed using both the full <math> <mrow> <msubsup><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </mrow> </math> -based encoding fields for each BS pulse amplitude and using inverse discrete Fourier transforms. A <math> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> </math> gradient was used for frequency encoding during signal readout, and the third axis was projected. Specific absorption ratio (SAR) calculations were performed for the wrist coil to determine the safety of BS-based RF encoding for <math> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> </math> fields in the low field MRI regime. The optimized RF spatial encoding coils resulted in higher linearity ( <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>=</mo> <mn>0.9981</mn></mrow> </math> and 0.9921 in the phantom and wrist coils, respectively) than coils used in previous work. The phantom and wrist imaging coils were validated in simulations and experimentally to produce a peak <math> <mrow> <msubsup><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> <mo>=</mo> <mn>1.35</mn></mrow> </math> G and 0.8 G with 12-W input power, respectively, in the field-of-view (length = 11 cm) used for imaging. Nominal imaging resolutions of 5.22 and 7.21 mm were, respectively, achieved by the two-coil systems in the RF phase-encoded dimension. Coil systems, pulse sequences, and image reconstructions were developed for linear RF phase encoding using the BS shift and validated using a 47.5-mT open low field scanner, establishing a key component required for <math> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> </math>  gradient-free imaging at low <math> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> </math>  field strengths.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5245"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative ultrashort echo time MR imaging of knee osteochondral junction: An ex vivo feasibility study. 膝关节骨软骨交界处的超短回波时间磁共振定量成像:体外可行性研究
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-28 DOI: 10.1002/nbm.5253
Jiyo S Athertya, Arya Suprana, James Lo, Alecio F Lombardi, Dina Moazamian, Eric Y Chang, Jiang Du, Yajun Ma

Compositional changes can occur in the osteochondral junction (OCJ) during the early stages and progressive disease evolution of knee osteoarthritis (OA). However, conventional magnetic resonance imaging (MRI) sequences are not able to image these regions efficiently because of the OCJ region's rapid signal decay. The development of new sequences able to image and quantify OCJ region is therefore highly desirable. We developed a comprehensive ultrashort echo time (UTE) MRI protocol for quantitative assessment of OCJ region in the knee joint, including UTE variable flip angle technique for T1 mapping, UTE magnetization transfer (UTE-MT) modeling for macromolecular proton fraction (MMF) mapping, UTE adiabatic T (UTE-AdiabT) sequence for T mapping, and multi-echo UTE sequence for T2* mapping. B1 mapping based on the UTE actual flip angle technique was utilized for B1 correction in T1, MMF, and T measurements. Ten normal and one abnormal cadaveric human knee joints were scanned on a 3T clinical MRI scanner to investigate the feasibility of OCJ imaging using the proposed protocol. Volumetric T1, MMF, T, and T2* maps of the OCJ, as well as the superficial and full-thickness cartilage regions, were successfully produced using the quantitative UTE imaging protocol. Significantly lower T1, T, and T2* relaxation times were observed in the OCJ region compared with those observed in both the superficial and full-thickness cartilage regions, whereas MMF showed significantly higher values in the OCJ region. In addition, all four UTE biomarkers showed substantial differences in the OCJ region between normal and abnormal knees. These results indicate that the newly developed 3D quantitative UTE imaging techniques are feasible for T1, MMF, T, and T2* mapping of knee OCJ, representative of a promising approach for the evaluation of compositional changes in early knee OA.

在膝关节骨关节炎(OA)的早期阶段和疾病逐渐发展的过程中,骨软骨交界处(OCJ)会发生成分变化。然而,由于 OCJ 区域的信号衰减较快,传统的磁共振成像(MRI)序列无法对这些区域进行有效成像。因此,开发能够对 OCJ 区域进行成像和量化的新序列是非常有必要的。我们开发了一套全面的超短回波时间(UTE)磁共振成像方案,用于膝关节OCJ区域的定量评估,包括用于T1映射的UTE可变翻转角技术、用于大分子质子分数(MMF)映射的UTE磁化传递(UTE-MT)模型、用于T1ρ映射的UTE绝热T1ρ(UTE-AdiabT1ρ)序列以及用于T2*映射的多回波UTE序列。在T1、MMF和T1ρ测量中,利用基于UTE实际翻转角技术的B1映射进行B1校正。在 3T 临床磁共振成像扫描仪上扫描了 10 个正常和 1 个异常的人体尸体膝关节,以研究使用建议方案进行 OCJ 成像的可行性。采用定量UTE成像方案成功绘制了OCJ以及表层和全厚软骨区域的T1、MMF、T1ρ和T2*容积图。与表层和全厚软骨区域相比,OCJ 区域的 T1、T1ρ 和 T2* 松弛时间明显较低,而 MMF 在 OCJ 区域的值明显较高。此外,所有四种UTE生物标记物在OCJ区域都显示出正常膝关节和异常膝关节之间的巨大差异。这些结果表明,新开发的三维定量UTE成像技术可用于膝关节OCJ的T1、MMF、T1ρ和T2*绘图,是评估早期膝关节OA成分变化的一种有前途的方法。
{"title":"Quantitative ultrashort echo time MR imaging of knee osteochondral junction: An ex vivo feasibility study.","authors":"Jiyo S Athertya, Arya Suprana, James Lo, Alecio F Lombardi, Dina Moazamian, Eric Y Chang, Jiang Du, Yajun Ma","doi":"10.1002/nbm.5253","DOIUrl":"10.1002/nbm.5253","url":null,"abstract":"<p><p>Compositional changes can occur in the osteochondral junction (OCJ) during the early stages and progressive disease evolution of knee osteoarthritis (OA). However, conventional magnetic resonance imaging (MRI) sequences are not able to image these regions efficiently because of the OCJ region's rapid signal decay. The development of new sequences able to image and quantify OCJ region is therefore highly desirable. We developed a comprehensive ultrashort echo time (UTE) MRI protocol for quantitative assessment of OCJ region in the knee joint, including UTE variable flip angle technique for T<sub>1</sub> mapping, UTE magnetization transfer (UTE-MT) modeling for macromolecular proton fraction (MMF) mapping, UTE adiabatic T<sub>1ρ</sub> (UTE-AdiabT<sub>1ρ</sub>) sequence for T<sub>1ρ</sub> mapping, and multi-echo UTE sequence for T<sub>2</sub>* mapping. B<sub>1</sub> mapping based on the UTE actual flip angle technique was utilized for B<sub>1</sub> correction in T<sub>1</sub>, MMF, and T<sub>1ρ</sub> measurements. Ten normal and one abnormal cadaveric human knee joints were scanned on a 3T clinical MRI scanner to investigate the feasibility of OCJ imaging using the proposed protocol. Volumetric T<sub>1</sub>, MMF, T<sub>1ρ</sub>, and T<sub>2</sub>* maps of the OCJ, as well as the superficial and full-thickness cartilage regions, were successfully produced using the quantitative UTE imaging protocol. Significantly lower T<sub>1</sub>, T<sub>1ρ</sub>, and T<sub>2</sub>* relaxation times were observed in the OCJ region compared with those observed in both the superficial and full-thickness cartilage regions, whereas MMF showed significantly higher values in the OCJ region. In addition, all four UTE biomarkers showed substantial differences in the OCJ region between normal and abnormal knees. These results indicate that the newly developed 3D quantitative UTE imaging techniques are feasible for T<sub>1</sub>, MMF, T<sub>1ρ</sub>, and T<sub>2</sub>* mapping of knee OCJ, representative of a promising approach for the evaluation of compositional changes in early knee OA.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5253"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion model based on generalized map for accelerated MRI. 基于加速磁共振成像广义图的扩散模型
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-04 DOI: 10.1002/nbm.5232
Zengwei Xiao, Yujuan Lu, Binzhong He, Pinhuang Tan, Shanshan Wang, Xiaoling Xu, Qiegen Liu

In recent years, diffusion models have made significant progress in accelerating magnetic resonance imaging. Nevertheless, it still has inherent limitations, such as prolonged iteration times and sluggish convergence rates. In this work, we present a novel generalized map generation model based on mean-reverting SDE, called GM-SDE, to alleviate these shortcomings. Notably, the core idea of GM-SDE is optimizing the initial values of the iterative algorithm. Specifically, the training process of GM-SDE diffuses the original k-space data to an intermediary degraded state with fixed Gaussian noise, while the reconstruction process generates the data by reversing this process. Based on the generalized map, three variants of GM-SDE are proposed to learn k-space data with different structural characteristics to improve the effectiveness of model training. GM-SDE also exhibits flexibility, as it can be integrated with traditional constraints, thereby further enhancing its overall performance. Experimental results showed that the proposed method can reduce reconstruction time and deliver excellent image reconstruction capabilities compared to the complete diffusion-based method.

近年来,扩散模型在加速磁共振成像方面取得了重大进展。然而,它仍然存在固有的局限性,如迭代时间长、收敛速度慢等。在这项工作中,我们提出了一种基于均值回复 SDE 的新型广义地图生成模型,称为 GM-SDE,以缓解这些缺陷。值得注意的是,GM-SDE 的核心思想是优化迭代算法的初始值。具体来说,GM-SDE 的训练过程是将原始的 k 空间数据扩散到带有固定高斯噪声的中间退化状态,而重建过程则通过逆转这一过程生成数据。在广义图的基础上,提出了 GM-SDE 的三种变体,以学习具有不同结构特征的 k 空间数据,从而提高模型训练的有效性。GM-SDE 还具有灵活性,可以与传统的约束条件相结合,从而进一步提高其整体性能。实验结果表明,与完全基于扩散的方法相比,所提出的方法可以缩短重建时间,并提供出色的图像重建能力。
{"title":"Diffusion model based on generalized map for accelerated MRI.","authors":"Zengwei Xiao, Yujuan Lu, Binzhong He, Pinhuang Tan, Shanshan Wang, Xiaoling Xu, Qiegen Liu","doi":"10.1002/nbm.5232","DOIUrl":"10.1002/nbm.5232","url":null,"abstract":"<p><p>In recent years, diffusion models have made significant progress in accelerating magnetic resonance imaging. Nevertheless, it still has inherent limitations, such as prolonged iteration times and sluggish convergence rates. In this work, we present a novel generalized map generation model based on mean-reverting SDE, called GM-SDE, to alleviate these shortcomings. Notably, the core idea of GM-SDE is optimizing the initial values of the iterative algorithm. Specifically, the training process of GM-SDE diffuses the original k-space data to an intermediary degraded state with fixed Gaussian noise, while the reconstruction process generates the data by reversing this process. Based on the generalized map, three variants of GM-SDE are proposed to learn k-space data with different structural characteristics to improve the effectiveness of model training. GM-SDE also exhibits flexibility, as it can be integrated with traditional constraints, thereby further enhancing its overall performance. Experimental results showed that the proposed method can reduce reconstruction time and deliver excellent image reconstruction capabilities compared to the complete diffusion-based method.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5232"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking gonadal development in fish: An in vivo MRI study on polar cod, Boreogadus saida (Lepechin, 1774). 追踪鱼类的性腺发育:对极地鳕鱼 Boreogadus saida (Lepechin, 1774) 的体内磁共振成像研究。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-07 DOI: 10.1002/nbm.5231
Nicole Vogt, Felizitas C Wermter, Jasmine Nahrgang, Daniela Storch, Christian Bock

Magnetic resonance imaging (MRI) was applied to determine the sex of polar cod (Boreogadus saida Lepechin, 1774) (Actinopterygii: Gadidae) and to follow the gonadal development in individual animals over time. Individual unanaesthetised fish were transferred to a measurement chamber inside a preclinical 9.4 T MRI scanner and continuously perfused with aerated seawater. A screening procedure at an average of 3.5 h, consisting of a set of MRI scans of different orientations, was repeated every 4 weeks on the same set of reproducing B. saida (n = 10) with a body length of about 20 cm. Adapted multi-slice flow-compensated fast low-angle shot (FcFLASH) and rapid acquisition with relaxation enhancement (RARE) protocols with an in-plane resolution of 313 μm and an acquisition time of 2.5 min were used to visualise the morphology of various organs, including the gonads within the field of view (FOV). The MR images provided high resolution, enabling specific sex determination, calculation of gonad volumes, and determination of oocyte sizes. Gonad maturation was followed over 4 months from November 2021 until shortly before spawning in February 2022. The gonad volume increased by 2.3-25.5% for males and by 11.5-760.7% for females during the observation period. From October to February, the oocyte diameter increased from 427 μm (n = 1) to 1346 ± 27 μm (n = 4). Interestingly, individual oocytes showed changes in MR contrast over time that can be attributed to the morphological development of the oocytes. The results fit well with previous literature data from classical invasive studies. The presented approach has great potential for various ecophysiological applications such as monitoring natural or delayed development of internal organs or sex determination under different environmental conditions.

磁共振成像(MRI)被用于确定极地鳕鱼(Boreogadus saida Lepechin, 1774)(翼手目:鳕科)的性别,并随时间跟踪个体动物的性腺发育情况。未经麻醉的鱼个体被转移到临床前 9.4 T 核磁共振成像扫描仪内的测量室,并持续灌注充气海水。在同一组体长约 20 厘米的繁殖 B. saida(n = 10)上,每 4 周重复一次平均 3.5 小时的筛选程序,包括一组不同方向的磁共振成像扫描。采用经调整的多层流补偿快速低角度扫描(FcFLASH)和弛豫增强快速采集(RARE)方案,平面内分辨率为 313 μm,采集时间为 2.5 分钟,以观察各种器官的形态,包括视野(FOV)内的性腺。核磁共振图像分辨率很高,可用于确定具体性别、计算性腺体积和确定卵母细胞大小。从 2021 年 11 月到 2022 年 2 月产卵前不久的 4 个月中,对性腺成熟情况进行了跟踪。在观察期间,雄性性腺体积增加了 2.3-25.5%,雌性性腺体积增加了 11.5-760.7%。从 10 月到 2 月,卵母细胞直径从 427 μm(n = 1)增加到 1346 ± 27 μm(n = 4)。有趣的是,随着时间的推移,单个卵母细胞的磁共振对比度会发生变化,这可能与卵母细胞的形态发育有关。结果与之前经典侵入式研究的文献数据非常吻合。该方法在各种生态生理学应用中具有巨大潜力,如监测内脏器官的自然或延迟发育,或在不同环境条件下进行性别鉴定。
{"title":"Tracking gonadal development in fish: An in vivo MRI study on polar cod, Boreogadus saida (Lepechin, 1774).","authors":"Nicole Vogt, Felizitas C Wermter, Jasmine Nahrgang, Daniela Storch, Christian Bock","doi":"10.1002/nbm.5231","DOIUrl":"10.1002/nbm.5231","url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) was applied to determine the sex of polar cod (Boreogadus saida Lepechin, 1774) (Actinopterygii: Gadidae) and to follow the gonadal development in individual animals over time. Individual unanaesthetised fish were transferred to a measurement chamber inside a preclinical 9.4 T MRI scanner and continuously perfused with aerated seawater. A screening procedure at an average of 3.5 h, consisting of a set of MRI scans of different orientations, was repeated every 4 weeks on the same set of reproducing B. saida (n = 10) with a body length of about 20 cm. Adapted multi-slice flow-compensated fast low-angle shot (FcFLASH) and rapid acquisition with relaxation enhancement (RARE) protocols with an in-plane resolution of 313 μm and an acquisition time of 2.5 min were used to visualise the morphology of various organs, including the gonads within the field of view (FOV). The MR images provided high resolution, enabling specific sex determination, calculation of gonad volumes, and determination of oocyte sizes. Gonad maturation was followed over 4 months from November 2021 until shortly before spawning in February 2022. The gonad volume increased by 2.3-25.5% for males and by 11.5-760.7% for females during the observation period. From October to February, the oocyte diameter increased from 427 μm (n = 1) to 1346 ± 27 μm (n = 4). Interestingly, individual oocytes showed changes in MR contrast over time that can be attributed to the morphological development of the oocytes. The results fit well with previous literature data from classical invasive studies. The presented approach has great potential for various ecophysiological applications such as monitoring natural or delayed development of internal organs or sex determination under different environmental conditions.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5231"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A human brain atlas of χ-separation for normative iron and myelin distributions. 用于规范铁和髓鞘分布的χ-分离人脑图谱。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-20 DOI: 10.1002/nbm.5226
Kyeongseon Min, Beomseok Sohn, Woo Jung Kim, Chae Jung Park, Soohwa Song, Dong Hoon Shin, Kyung Won Chang, Na-Young Shin, Minjun Kim, Hyeong-Geol Shin, Phil Hyu Lee, Jongho Lee

Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for a healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as χ-separation (pronounced as "chi"-separation), has been proposed, successfully disentangling paramagnetic iron from diamagnetic myelin. This method provided a new opportunity for generating high-resolution iron and myelin maps of the brain. Utilizing this technique, this study constructs a normative χ-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei, thalamic nuclei, and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.

铁和髓鞘是人脑中的主要易感源。这些物质是健康大脑所必需的,而它们的异常往往与各种神经系统疾病有关。最近,一种被称为χ-separation(读作 "chi"-separation)的先进电感绘图技术被提出,成功地将顺磁性铁从二磁性髓鞘中分离出来。这种方法为生成高分辨率的大脑铁和髓鞘图提供了新的机会。本研究利用这一技术,从 106 个健康人的大脑中构建了一个规范的 χ 分离图谱。生成的图谱提供了与铁和髓鞘分布相关的详细解剖结构,清晰地勾勒出皮层下核、丘脑核和白质纤维束。此外,该图谱还报告了一些相关区域的电感值以及随年龄而发生的变化。该地图集可直接应用于深部脑刺激或高强度聚焦超声的皮层下结构定位,也可作为未来研究的宝贵资源。
{"title":"A human brain atlas of χ-separation for normative iron and myelin distributions.","authors":"Kyeongseon Min, Beomseok Sohn, Woo Jung Kim, Chae Jung Park, Soohwa Song, Dong Hoon Shin, Kyung Won Chang, Na-Young Shin, Minjun Kim, Hyeong-Geol Shin, Phil Hyu Lee, Jongho Lee","doi":"10.1002/nbm.5226","DOIUrl":"10.1002/nbm.5226","url":null,"abstract":"<p><p>Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for a healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as χ-separation (pronounced as \"chi\"-separation), has been proposed, successfully disentangling paramagnetic iron from diamagnetic myelin. This method provided a new opportunity for generating high-resolution iron and myelin maps of the brain. Utilizing this technique, this study constructs a normative χ-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei, thalamic nuclei, and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5226"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity analysis of models of gas exchange for lung hyperpolarised 129Xe MR. 肺超极化 129Xe MR 气体交换模型的敏感性分析。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-25 DOI: 10.1002/nbm.5239
Yohn Taylor, Frederick J Wilson, Mina Kim, Geoff J M Parker

Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised 129Xe gas exchange in the lung. Here, we evaluate the current 129Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.

通过敏感性分析,可以确定有影响的参数并优化模型组成。这种方法以前从未系统地应用于描述肺内超极化 129Xe 气体交换的模型。在此,我们对当前的 129Xe 气体交换模型进行了评估,以评估其识别肺血管功能和肺微结构变化的精确性。我们使用既定的单变量方法和参数相互作用散点图来评估敏感性。我们将这些方法应用于 Patz 等人描述的模型和氙交换模型 (MOXE),检查它们测量以下方面的能力:i) 重要性(等级);ii) 时间依赖性;iii) 各参数在健康和疾病范围内的交互作用。单变量方法和散点图分析表明,两个评估模型中常见参数的重要性结果始终相似。肺泡表面积与体积比被确定为模型信号最敏感的参数。肺泡-毛细血管屏障厚度被确定为 MOXE 模型的低敏感参数。至少 200 毫秒的采集窗口有效地证明了模型对大多数参数的敏感性。散点图显示了两种模型的交互效应,影响了输出变异性和灵敏度。我们的灵敏度分析对 Patz 等人描述的模型和 MOXE 模型中的参数进行了排序。MOXE 模型对肺泡-毛细血管屏障厚度的灵敏度较低,这说明需要设计优化的采集方案来测量这一参数。参数交互效应的存在凸显了在解释模型输出结果时需要小心谨慎。
{"title":"Sensitivity analysis of models of gas exchange for lung hyperpolarised <sup>129</sup>Xe MR.","authors":"Yohn Taylor, Frederick J Wilson, Mina Kim, Geoff J M Parker","doi":"10.1002/nbm.5239","DOIUrl":"10.1002/nbm.5239","url":null,"abstract":"<p><p>Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised <sup>129</sup>Xe gas exchange in the lung. Here, we evaluate the current <sup>129</sup>Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5239"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
NMR in Biomedicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1